Skip to main content

Optical Flow and Image Registration: A New Local Rigidity Approach for Global Minimization

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

  • 1389 Accesses

Abstract

We address the theoretical problems of optical flow estimation and image registration in a multi-scale framework in any dimension. Much work has been done based on the minimization of a distance between a first image and a second image after applying deformation or motion field. We discuss the classical multiscale approach and point out the problem of validity of the motion constraint equation (MCE) at lower resolutions. We introduce a new local rigidity hypothesis allowing to write proof of such a validity. This allows us to derive sufficient conditions for convergence of a new multi-scale and iterative motion estimation/registration scheme towards a global minimum of the usual nonlinear energy instead of a local minimum as did all previous methods. Although some of the sufficient conditions cannot always be fulfilled because of the absence of the necessary a priori knowledge on the motion, we use an implicit approach. We illustrate our method by showing results on synthetic and real examples (Motion, Registration, Morphing), including large deformation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, J. Esclarin, M. Lefébure, J. Sanchez. A PDE model for computing the optical flow. Proc. XVI Congresso de Ecuaciones Diferenciales y Aplicaciones, Las Palmas, pp. 1349–1356, 1999.

    Google Scholar 

  2. L. Alvarez, J. Weickert, J. Sanchez, Reliable estimation of dense optical flow fields with large displacements. TR 2, Universidad de Las Palmas de Gran Canaria, November 1999.

    Google Scholar 

  3. G. Aubert, R. Deriche and P. Kornprobst. Computing optical flow via variational techniques. SIAM J. Appl. Math., Vol. 60(1), pp. 156–182, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Ayache. Medical computer vision, virtual reality and robotics. IVC (13), No 4, May 1995, pp 295–313.

    Google Scholar 

  5. Ruzena Bajcsy and Stane Kovacic. Multiresolution elastic matching. CVGIP, (46), No 1, pp. 1–21, 1989.

    Google Scholar 

  6. J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow. IJCV, 12(1):43–77, 1994.

    Article  Google Scholar 

  7. M. Ben-Ezra, B. Rousso, and S. Peleg. Motion segmentation using convergence properties. In ARPA Im. Unders. Workshop, pp II 1233–1235, 1994.

    Google Scholar 

  8. J.R. Bergen and E.H. Adelson. Hierarchical, computationally efficient motion estimation algorithm. J. of the Optical Society Am., 4(35), 1987.

    Google Scholar 

  9. C. Bernard. Discrete wavelet analysis: a new framework for fast optic flow computation. ECCV, 1998.

    Google Scholar 

  10. M. Black and A. Rangajaran. On the unification of line processes, outlier rejection and robust statistics with applications in early vision. IJCV, Vol. 19, 1996.

    Google Scholar 

  11. P. Bouthemy and J.M. Odobez. Robust multiresolution estimation of parametric motion models. J. of Vis. Comm. and Image Repres., 6(4):348–365, 1995.

    Article  Google Scholar 

  12. M. Bro-Nielsen and C. Gramkow. Fast fluid registration of medical images. VBC’96 Springer LNCS 1131, Hamburg, Germany, pp 267–276, Sept. 1996.

    Google Scholar 

  13. G. Christensen, R.D. Rabbitt, and M.I. Miller. 3D brain mapping using a de-formable neuroanatomy. Physics in Med and Biol, (39), March:609–618, 1994.

    Google Scholar 

  14. D. Fleet, M. Black, Y. Yacoob and A. Jepson. Design and use of linear models for image motion analysis. IJCV, 36(3), 2000.

    Google Scholar 

  15. B. Galvin, B. McCane, K. Novins, D. Mason and S. Mills. Recovering Motion fields: An analysis of eight optical flow algorithms, BMVC’98, Sept. 1998.

    Google Scholar 

  16. P.R. Giaccone, D. Greenhill, G.A. Jones. Recovering very large visual motion fields. SCIA97, pp 917–922.

    Google Scholar 

  17. B.K.P. Horn and Brian Schunck. Determining optical flow. Artificial Intelligence, (17) (1–3):185–204, 1981.

    Article  Google Scholar 

  18. M. Irani, B. Rousso, and S. Peleg. Detecting and tracking multiple moving objects using temporal integration. In ECCV92, pp 282–287, 1992.

    Google Scholar 

  19. M. Lefébure Estimation de Mouvement et Recalage de Signaux et d’Images: Formalisation et Analyse. PhD Thesis, Université Paris-Dauphine, 1998.

    Google Scholar 

  20. M. Lefébure and L. D. Cohen. Image Registration, Optical Flow and Local Rigidity. CEREMADE Technical Report, 0102, January 2001. To appear in Journal of Mathematical Imaging and Vision, 14(2):131–147, March 2001.

    Google Scholar 

  21. E. Mémin and P. Pérez. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. IP, 1998.

    Google Scholar 

  22. S. Srinivasan, R. Chellappa. Optical flow using overlapped basis functions for solving global motions problems. In ECCV98, pp 288–304, 1998.

    Google Scholar 

  23. C. Stiller and J. Konrad. Estimating motion in image sequences. In IEEE Signal Processing Magazine, Vol. 16, July, pp 70–91, 1999.

    Google Scholar 

  24. D. Terzopoulos. Multiresolution algorithms in computational vision. Image Understanding. S. Ullman, W. Richards, 1986.

    Google Scholar 

  25. J.P. Thirion. Fast non-rigid matching of 3D medical images. Technical Report 2547, INRIA, 1995.

    Google Scholar 

  26. A. Trouvé. Diffeomorphisms groups and pattern matching in image analysis. IJCV, 28(3), 1998.

    Google Scholar 

  27. B. C. Vemuri, J. Ye, Y. Chen and C. M. Leonard. A level-set based approach to image registration. Proc. IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, MMBIA’00, Hilton Head Island, South Carolina, pp. 86–93, June 11–12 2000.

    Google Scholar 

  28. J. Weickert. On discontinuity-preserving optic flow. Proc. Computer Vision and Mobile Robotics Workshop, Santorini, pp. 115–122, Sept. 1998.

    Google Scholar 

  29. G. Whitten. A framework for adaptive scale space tracking solutions to problems in computational vision. In ICCV’90, Osaka, pp 210–220, Dec 1990.

    Google Scholar 

  30. A. Witkin, D. Terzopoulos, M. Kass. Signal matching through scale space. IJCV, 1(2):133–144, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lefébure, M., Cohen, L.D. (2001). Optical Flow and Image Registration: A New Local Rigidity Approach for Global Minimization. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics