Advertisement

A Short Tutorial on Evolutionary Multiobjective Optimization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1993)

Abstract

This tutorial will review some of the basic concepts related to evolutionary multiobjective optimization (i.e., the use of evolutionary algorithms to handle more than one objective function at a time). The most commonly used evolutionary multiobjective optimization techniques will be described and criticized, including some of their applications. Theory, test functions and metrics will be also discussed. Finally, we will provide some possible paths of future research in this area.

Keywords

Genetic Algorithm Pareto Front Multiobjective Optimization Multiobjective Optimization Problem Nondominated Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Arslan, D. H. Horrocks, and E. Ozdemir. Structural Synthesis of Cell-based VLSI Circuits using a Multi-Objective Genetic Algorithm. IEE Electronic Letters, 32(7):651–652, March 1996.CrossRefGoogle Scholar
  2. 2.
    Tapan P. Bagchi. Multiobjective Scheduling by Genetic Algorithms. Kluwer Aca-demic Publishers, Boston, 1999.Google Scholar
  3. 3.
    A. J. Chipperfield and P. J. Fleming. Gas Turbine Engine Controller Design using Multiobjective Genetic Algorithms. In A. M. S. Zalzala, editor, Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineer-ing Systems: Innovations and Applications, GALESIA’95, pages 214–219, Halifax Hall, University of Sheffield, UK, September 1995. IEEE.Google Scholar
  4. 4.
    Scott E. Cieniawski, J. W. Eheart, and S. Ranjithan. Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem. Water Resources Research, 31(2):399–409, February 1995.CrossRefGoogle Scholar
  5. 5.
    Carlos Artemio CoelloCoello. A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems. An International Journal, 1(3):269–308, August 1999Google Scholar
  6. 6.
    Carlos Artemio CoelloCoello. Handling Preferences in Evolutionary Multiobjective Optimization: A Survey. In 2000 Congress on Evolutionary Computation, volume 1, pages 30–37, Piscataway, New Jersey, July 2000. IEEE Service Center.Google Scholar
  7. 7.
    Carlos Artemio CoelloCoello. Treating Constraints as Objectives for Single-Objective Evolutionary Optimization. Engineering Optimization, 32(3):275–308, 2000.CrossRefGoogle Scholar
  8. 8.
    Carlos Artemio CoelloCoello, Arturo Hernández Aguirre, and Bill P. Buckles. Evolu-tionary Multiobjective Design of Combinational Logic Circuits. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pages 161–170, Los Alamitos, California, July 2000. IEEE Computer Society.Google Scholar
  9. 9.
    Carlos Artemio CoelloCoello and Alan D. Christiansen. Two New GA-based methods for multiobjective optimization. Civil Engineering Systems, 15(3):207–243, 1998.CrossRefGoogle Scholar
  10. 10.
    Carlos Artemio CoelloCoello, Alan D. Christiansen, and Arturo Hernández Aguirre.Using a New GA-Based Multiobjective Optimization Technique for the Design of Robot Arms. Robotica, 16(4):401–414, July-August 1998.CrossRefGoogle Scholar
  11. 11.
    Carlos Artemio CoelloCoello. An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design. PhD thesis, Department of Computer Science, Tulane University, New Orleans, LA, April 1996.Google Scholar
  12. 12.
    Dragan Cvetković. Evolutionary Multi-Objective Decision Support Systems for Conceptual Design. PhD thesis, School of Computing, University of Plymouth, Plymouth, UK, November 2000Google Scholar
  13. 13.
    Indraneel Das and John Dennis. A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Opti-mization Problems. Structural Optimization, 14(1):63–69, 1997.CrossRefGoogle Scholar
  14. 14.
    Kalyanmoy Deb. Multi-Objective Genetic Algorithms: Problem Dićulties and Construction of Test Problems. Technical Report CI-49/98, Dortmund: Depart-ment of Computer Science/LS11, University of Dortmund, Germany, 1998.Google Scholar
  15. 15.
    Kalyanmoy Deb. Evolutionary Algorithms for Multi-Criterion Optimization in En-gineering Design. In Kaisa Miettinen, Marko M. Mäkelä, Pekka Neittaanmäki, and Jacques Periaux, editors, Evolutionary Algorithms in Engineering and Computer Science, chapter 8, pages 135–161. John Wiley & Sons, Ltd, Chichester, UK, 1999.Google Scholar
  16. 16.
    Kalyanmoy Deb. Solving Goal Programming Problems Using Multi-Objective Ge-netic Algorithms. In 1999 Congress on Evolutionary Computation, pages 77–84, Washington, D.C., July 1999. IEEE Service Center.Google Scholar
  17. 17.
    Kalyanmoy Deb. An Efficient Constraint Handling Method for Genetic Algorithms.Computer Methods in Applied Mechanics and Engineering, 2000. (in Press).Google Scholar
  18. 18.
    Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast Eli-tist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India, 2000.Google Scholar
  19. 19.
    Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast Eli-tist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In Proceedings of the Parallel Problem Solving from Nature VI Conference, pages 849–858. Springer, 2000.Google Scholar
  20. 20.
    Kalyanmoy Deb and David E. Goldberg. An Investigation of Niche and Species Formation in Genetic Function Optimization. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 42–50, San Mateo, California, June 1989. George Mason University, Morgan Kaufmann Publishers.Google Scholar
  21. 21.
    N.M. Duarte, A. E. Ruano, C.M. Fonseca, and P.J. Fleming. Accelerating Multi-Objective Control System Design Using a Neuro-Genetic Approach. In 2000 Congress on Evolutionary Computation, volume 1, pages 392–397, Piscataway, New Jersey, July 2000. IEEE Service Center.Google Scholar
  22. 22.
    F. Y. Edgeworth. Mathematical Physics. P. Keagan, London, England, 1881.Google Scholar
  23. 23.
    Matthias Ehrgott and Xavier Gandibleux. An Annotated Bibliography of Multi-objective Combinatorial Optimization. Technical Report 62/2000, Fachbereich Mathematik, Universitat Kaiserslautern, Kaiserslautern, Germany, 2000.Google Scholar
  24. 24.
    C. Emmanouilidis, A. Hunter, and J. MacIntyre. A Multiobjective Evolutionary Setting for Feature Selection and a Commonality-Based Crossover Operator. In 2000 Congress on Evolutionary Computation, volume 1, pages 309–316, Piscat-away, New Jersey, July 2000. IEEE Service Center.Google Scholar
  25. 25.
    Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 416–423, San Mateo, California, 1993. University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers.Google Scholar
  26. 26.
    Carlos M. Fonseca and Peter J. Fleming. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Technical report, Department of Automatic Con-trol and Systems Engineering, University of Sheffield, Sheffield, U. K., 1994.Google Scholar
  27. 27.
    Carlos M. Fonseca and Peter J. Fleming. An Overview of Evolutionary Al-gorithms in Multiobjective Optimization. Evolutionary Computation, 3(1):1–16, Spring 1995.CrossRefGoogle Scholar
  28. 28.
    Carlos M. Fonseca and Peter J. Fleming. On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Prob-lem Solving from Nature PPSN IV, Lecture Notes in Computer Science, pages 584–593, Berlin, Germany, September 1996. Springer-Verlag.CrossRefGoogle Scholar
  29. 29.
    David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.Google Scholar
  30. 30.
    Pierre Grignon, J. Wodziack, and G. M. Fadel. Bi-Objective optimization of com-ponents packing using a genetic algorithm. In NASA/AIAA/ISSMO Multidisci-plinary Design and Optimization Conference, pages 352–362, Seattle, Washington, September 1996. AIAA-96-4022-CP.Google Scholar
  31. 31.
    W. Habenicht. Quad trees, A data structure for discrete vector optimization prob-lems. In Lecture notes in economics and mathematical systems, volume 209, pages 136–145, 1982.Google Scholar
  32. 32.
    P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion optimal design.Structural Optimization, 4:99–107, 1992.CrossRefGoogle Scholar
  33. 33.
    T. Hanne. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research, 117(3):553–564, September 2000.CrossRefGoogle Scholar
  34. 34.
    Thomas Hanne. Global Multiobjective Optimization Using Evolutionary Algo-rithms. Journal of Heuristics, 6(3):347–360, August 2000.zbMATHCrossRefGoogle Scholar
  35. 35.
    Jeffrey Horn. Multicriterion Decision Making. In Thomas Bäck, David Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation, volume 1, pages F1.9:1 – F1.9:15. IOP Publishing Ltd. and Oxford University Press, 1997.Google Scholar
  36. 36.
    Jeffrey Horn. The Nature of Niching: Genetic Algorithms and the Evolution of Optimal, Cooperative Populations. PhD thesis, University of Illinois at Urbana Champaign, Urbana, Illinois, 1997.Google Scholar
  37. 37.
    Jeffrey Horn and Nicholas Nafpliotis. Multiobjective Optimization using the Niched Pareto Genetic Algorithm. Technical Report IlliGAl Report 93005, Uni-versity of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993.Google Scholar
  38. 38.
    Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A Niched Pareto Ge-netic Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computa-tional Intelligence, volume 1, pages 82–87, Piscataway, New Jersey, June 1994. IEEE Service Center.Google Scholar
  39. 39.
    Andrzej Jaszkiewicz. On the performance of multiple objective genetic local search on the 0/1 knapsack problem. a comparative experiment. Technical Report RA-002/2000, Institute of Computing Science, Poznan University of Technology, Poznan, Poland, July 2000.Google Scholar
  40. 40.
    S. Kaufmann. Adaptation on rugged fitness landscapes. In D. Stein, editor, Lec-tures in the Sciences of Complexity, pages 527–618. Addison-Wesley, Reading, Mas-sachusetts, 1989.Google Scholar
  41. 41.
    Joshua D. Knowles and David W. Corne. The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimisation. In 1999 Congress on Evolutionary Computation, pages 98–105, Washington, D.C., July 1999. IEEE Service Center.Google Scholar
  42. 42.
    Joshua D. Knowles and David W. Corne. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–172, 2000.CrossRefGoogle Scholar
  43. 43.
    R. Mäkinen, P. Neittaanmäki, J. Périaux, and J. Toivanen. A genetic Algorithm for Multiobjective Design Optimization in Aerodynamics and Electromagnetics. In K. D. Papailiou et al., editor, Computational Fluid Dynamics’ 98, Proceedings of the ECCOMAS 98 Conference, volume 2, pages 418–422, Athens, Greece, September 1998. Wiley.Google Scholar
  44. 44.
    Bernard Manderick, Mark de Weger, and Piet Spiessens. The Genetic Algorithm and the Structure of the Fitness Landscape. In Richard K. Belew and Lashon B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 143–150, San Mateo, California, 1991. Morgan Kaufmann.Google Scholar
  45. 45.
    Teodor Marcu. A multiobjective evolutionary approach to pattern recognition for robust diagnosis of process faults. In R. J. Patton and J. Chen, editors, IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes: SAFEPROCESS’97, pages 1183–1188, Kington Upon Hull, United Kingdom, August 1997.Google Scholar
  46. 46.
    Kaisa M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, Massachusetts, 1998.Google Scholar
  47. 47.
    David Montana, Marshall Brinn, Sean Moore, and Garrett Bidwell. Genetic Al-gorithms for Complex, Real-Time Scheduling. In Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, pages 2213–2218, La Jolla, California, October 1998. IEEE.Google Scholar
  48. 48.
    S. Obayashi, S. Takahashi, and Y. Takeguchi. Niching and Elitist Models for MOGAs. In A. E. Eiben, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving From Nature PPSN V, pages 260–269, Amsterdam, Holland, 1998. Springer-Verlag.Google Scholar
  49. 49.
    Andrzej Osyczka. Multicriteria optimization for engineering design. In John S. Gero, editor, Design Optimization, pages 193–227. Academic Press, 1985.Google Scholar
  50. 50.
    Vilfredo Pareto. Cours D’Economie Politique, volume I and II. F. Rouge, Lau-sanne, 1896.Google Scholar
  51. 51.
    Jon T. Richardson, Mark R. Palmer, Gunar Liepins, and Mike Hilliard. Some Guidelines for Genetic Algorithms with Penalty Functions. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 191–197, George Mason University, 1989. Morgan Kaufmann Publishers.Google Scholar
  52. 52.
    R. S. Rosenberg. Simulation of genetic populations with biochemical properties.PhD thesis, University of Michigan, Ann Harbor, Michigan, 1967.Google Scholar
  53. 53.
    Günter Rudolph. On a Multi-Objective Evolutionary Algorithm and Its Conver-gence to the Pareto Set. In Proceedings of the 5th IEEE Conference on Evolutionary Computation, pages 511–516, Piscataway, New Jersey, 1998. IEEE Press.Google Scholar
  54. 54.
    Günter Rudolph and Alexandru Agapie. Convergence Properties of Some Multi-Objective Evolutionary Algorithms. In Proceedings of the 2000 Conference on Evolutionary Computation, volume 2, pages 1010–1016, Piscataway, New Jersey, July 2000. IEEE Press.Google Scholar
  55. 55.
    Enrique H. Ruspini and Igor S. Zwir. Automated Qualitative Description of Mea-surements. In Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, Venice, Italy, 1999.Google Scholar
  56. 56.
    Eric Sandgren. Multicriteria design optimization by goal programming. In Hojjat Adeli, editor, Advances in Design Optimization, chapter 23, pages 225–265. Chapman & Hall, London, 1994.Google Scholar
  57. 57.
    J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, 1984.Google Scholar
  58. 58.
    J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Ge-netic Algorithms. In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pages 93–100. Lawrence Erlbaum, 1985.Google Scholar
  59. 59.
    J. David Schaffer and John J. Grefenstette. Multiobjective Learning via Genetic Algorithms. In Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85), pages 593–595, Los Angeles, California, 1985. AAAI.Google Scholar
  60. 60.
    N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, Fall 1994.CrossRefGoogle Scholar
  61. 61.
    W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, editor, Multicriteria Optimization in Engineering and the Sciences, pages 1–25. Plenum Press, New York, 1988.Google Scholar
  62. 62.
    W. Stadler and J. Dauer. Multicriteria optimization in engineering: A tutorial and survey. In Structural Optimization: Status and Future, pages 209–249. American Institute of Aeronautics and Astronautics, 1992.Google Scholar
  63. 63.
    Mark W. Thomas. A Pareto Frontier for Full Stern Submarines via Genetic Al-gorithm. PhD thesis, Ocean Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, june 1998.Google Scholar
  64. 64.
    David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,Analyses, and New Innovations. PhD thesis, Department of Electrical and Com-puter Engineering. Graduate School of Engineering. Air Force Institute of Tech-nology, Wright-Patterson AFB, Ohio, May 1999.Google Scholar
  65. 65.
    David A. Van Veldhuizen and Gary B. Lamont. Evolutionary Computation and Convergence to a Pareto Front. In John R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998 Conference, pages 221–228, Stanford University, California, July 1998. Stanford University Bookstore.Google Scholar
  66. 66.
    David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Evolutionary Algo-rithm Research: A History and Analysis. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, 1998.Google Scholar
  67. 67.
    David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Evolutionary Algorithm Test Suites. In Janice Carroll, Hisham Haddad, Dave Oppenheim, Barrett Bryant, and Gary B. Lamont, editors, Proceedings of the 1999 ACM Symposium on Applied Computing, pages 351–357, San Antonio, Texas, 1999. ACMCrossRefGoogle Scholar
  68. 68.
    D. S. Weile, E. Michielssen, and D. E. Goldberg. Genetic algorithm design of pareto optimal broad-band microwave absorbers. Technical Report CCEM-4-96,Electrical and Computer Engineering Department, Center for Computational Elec-tromagnetics, University of Illinois at Urbana-Champaign, May 1996.Google Scholar
  69. 69.
    J. F. Whidborne, D.-W. Gu, and I. Postlethwaite. Algorithms for the method of inequalities-a comparative study. In Procedings of the 1995 American Control Conference, pages 3393–3397, Seattle, Washington, 1995.Google Scholar
  70. 70.
    P. B. Wienke, C. Lucasius, and G. Kateman. Multicriteria target optimization of analytical procedures using a genetic algorithm. Analytical Chimica Acta, 265(2):211–225, 1992.CrossRefGoogle Scholar
  71. 71.
    P. B. Wilson and M. D. Macleod. Low implementation cost IIR digital filter design using genetic algorithms. In IEE/IEEE Workshop on Natural Algorithms in Signal Processing, pages 4/1–4/8, Chelmsford, U.K., 1993.Google Scholar
  72. 72.
    R. S. Zebulum, M. A. Pacheco, and M. Vellasco. A multi-objective optimisa-tion methodology applied to the synthesis of low-power operational amplifiers. In Ivan Jorge Cheuri and Carlos Alberto dos Reis Filho, editors, Proceedings of the XIII International Conference in Microelectronics and Packaging, volume 1, pages 264–271, Curitiba, Brazil, AuguGoogle Scholar
  73. 73.
    Gengui Zhou and Mitsuo Gen. Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European Journal of Operational Research, 114(1), April 1999.Google Scholar
  74. 74.
    Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, November 1999.Google Scholar
  75. 75.
    Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195, Summer 2000.CrossRefGoogle Scholar
  76. 76.
    Eckart Zitzler, Jürgen Teich, and Shuvra S. Bhattacharyya. Multidimensional Exploration of Software Implementations for DSP Algorithms. VLSI Signal Pro-cessing Systems, 1999. (To appear).Google Scholar
  77. 77.
    Eckart Zitzler and Lothar Thiele. An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach. Technical Report 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, May 1998.Google Scholar
  78. 78.
    Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A Com-parative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, November 1999.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.CINVESTAV-IPNDepto. de Ingeniería EléctricaSección de Computación Av. Instituto Politécnico NacionalCol. San Pedro ZacatencoMéxico

Personalised recommendations