Skip to main content

Dynamics of Fracture

  • Conference paper
  • First Online:
Coherent Structures in Complex Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 567))

  • 667 Accesses

Abstract

With the advent ofscalable parallel computers, atomistic simulations are providing immediate insights into the nature off racture dynamics by allowing us to “see” what is happening on the atomic scale. One ofour most intriguing findings is a dynamic instability ofthe crack tip in rapid brittle fracture which prevents a crack from achieving its theoretical steady-state speed equal to the Rayleigh wave speed. Also, theory suggests that crack speeds beyond the Rayleigh speed may be forbidden. However, recent experiments, for shear dominated crack growth, report evidence to the contrary. To understand this phenomenon, we have performed molecular dynamics simulations ofcrac k propagation along a weak interface joining to strong crystals. They show that a mode I tensile crack is indeed limited by the Rayleigh wave speed, consistent with the classical theories off racture. However, a mode II shear dominated crack can accelerate to the Rayleigh wave speed and then nucleate an intersonic daughter crack which quickly accelerates to the longitudinal wave speed. Furthermore, crack speeds can even surpass longitudinal wave speed in materials exhibiting elastic stifiening behavior. This phenomenon is totally contradictory to predictions ofclassical theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, F. F., Computational Statistical Mechanics: Methodology, Applications and Supercomputing, Advances in Physics, 35, 1 (1986). Concerning the supercomputing, this article is dated but still useful.

    Article  ADS  Google Scholar 

  2. Abraham, F. F., Europhysics Letters, 38, No. 2, 103 (1997).

    Article  ADS  Google Scholar 

  3. Abraham, F. F., Brodbeck D., Rafey R. and Rudge, W. E., Phys.Rev.Lett., 73, 272 (1994).

    Article  ADS  Google Scholar 

  4. Abraham, F. F., Brodbeck, D., Rudge, W. E. and Xu, X-P, J.Mech.Phys.Solids, 45, 1595 (1997).

    Article  MATH  ADS  Google Scholar 

  5. Abraham, F. F., Broughton, J. Q., Bernstein, N. and Kaxiras, E., Computers In Physics, 12, 538 (1998); Europhys.Lett., 44, 783-787 (1998).

    Article  ADS  Google Scholar 

  6. Abraham, F. F., Bernstein, N., Broughton, J. Q. and Hess, D., MRS Bulletin,, (2000).

    Google Scholar 

  7. Abraham, F. F. and Gao, H., Phys.Rev.Lett.,, (2000).

    Google Scholar 

  8. Abraham, F. F., Schneider, D., Land, B., Lifka, D., Skovira, J., Gerner, J. and Rosenkrantz, M., J.Mech.Phys.Solids, 45, 1461 (1997).

    Article  MATH  ADS  Google Scholar 

  9. Aki, K. and Richards, P.G., Quantitative Seismology (W. H. Freeman, 2 Volumes, 1980).

    Google Scholar 

  10. Andrews, D.J., J. Geophys. Res., 81, 5679 (1976).

    Article  ADS  Google Scholar 

  11. Archuleta, R. J., Bull. Seis. Soc., Am., 72, 1927 (1982).

    Google Scholar 

  12. Broberg, K. B., Int. J. Fract., 39, 1 (1989).

    Article  Google Scholar 

  13. Broberg, K. B., Cracks and Fracture (Academic Press, San Diego, 1999).

    Google Scholar 

  14. Burridge, R., Geophys. J. Roy. Astron. Soc., 35, 439 (1973).

    MATH  Google Scholar 

  15. Clementi, E., Phil.Trans. Roy. Soc., A326, 445–470 (1988).

    Article  ADS  Google Scholar 

  16. Freund, L.B., Dynamical Fracture Mechanics (Cambridge Univ. Press, New York, 1990).

    Book  Google Scholar 

  17. Freund, L. B., J. ofGeoph ys. Res., 84, 2199 (1979).

    Article  ADS  Google Scholar 

  18. Gao, H., J. Mech. Phys. Solids, 41, 457 (1993).

    Article  ADS  Google Scholar 

  19. Gao, H., Huang, Y. and Abraham, F. F., unpublished.

    Google Scholar 

  20. Fineberg, J., Gross, S., Marder, M. and Swinney H., Phys.Rev.Lett., 67, 457 (1991). Phys.Rev.B, 45, 5146 (1992).

    Article  ADS  Google Scholar 

  21. Gordon, J. E., The New Science ofStrong Materials (Princeton University Press, New Jersey, 1984).

    Google Scholar 

  22. Rosakis, A.J., Samudrala, O. and Coker, D., Science, 284, 1337 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abraham, F.F. (2001). Dynamics of Fracture. In: Reguera, D., Rubí, J.M., Bonilla, L.L. (eds) Coherent Structures in Complex Systems. Lecture Notes in Physics, vol 567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44698-2_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-44698-2_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41705-7

  • Online ISBN: 978-3-540-44698-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics