Advertisement

Inviscid Two-Dimensional Fluid Dynamics Experiments with Magnetized Electron Columns

  • Joel Fajans
  • Daniel Durkin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 567)

Abstract

Inviscid two-dimensional (2D) fluid phenomena like hurricanes, jet streams, Jupiter’s Red Spot, and protoplanetary disks are quite common in Nature. Unfortunately, 2D fluid phenomena are difficult to study in the laboratory because the finite size of laboratory apparati commonly introduces unwanted viscous and friction effects. Magnetized electron columns, however, behave like two-dimensional fluids and are not subject to viscous effects [1]. The columns behave like fluids because the equations which govern their behavior, the Drift-Poisson Equations, are identical to the 2D inviscid Euler equations which govern 2D fluids.

Keywords

Vortex Ring Unstable Equilibrium Point Vortex Protoplanetary Disk Background Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Levy, Phys. Fluids 8, 1288 (1965).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    D. Durkin and J. Fajans, Rev. Sci. Instrum. 70, 4539 (1999).CrossRefADSGoogle Scholar
  3. 3.
    J. H. Malmberg, C. F. Driscoll, B. Beck, D. L. Eggleston, J. Fajans, K. Fine, X. P. Huang, and A. W. Hyatt, in Nonneutral Plasma Physics, edited by C. Roberson and C. Driscoll (American Institute of Physics, New York, 1988), Vol. AIP 175, p. 28.Google Scholar
  4. 4.
    W. D. White, J. H. Malmberg, and C. F. Driscoll, Phys. Rev. Lett. 49, 1822 (1982).CrossRefADSGoogle Scholar
  5. 5.
    M. V. Melander, N. J. Zabusky, and J. C. McWilliams, J. Fluid Mech. 195, 303 (1988).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    D. L. Eggleston, Phys. Plasmas 1, 3850 (1995).CrossRefADSGoogle Scholar
  7. 7.
    K. S. Fine, C. F. Driscoll, J. H. Malmberg, and T. B. Mitchell, Phys. Rev. Lett. 67, 588 (1991).CrossRefADSGoogle Scholar
  8. 8.
    A. J. Peurrung and J. Fajans, Phys. Fluids A 5, 493 (1993).CrossRefADSGoogle Scholar
  9. 9.
    A. J. Peurrung, J. Notte, and J. Fajans, J. Fluid Mech. 252, 713 (1993).CrossRefADSGoogle Scholar
  10. 10.
    D. Durkin and J. Fajans, submitted to Phys. Rev. Lett.Google Scholar
  11. 11.
    D.Z. Jin and D.H.E. Dubin, submitted to Phys. Plasmas.Google Scholar
  12. 12.
    T. Havelock, Philos. Mag. 11, 617 (1931).zbMATHGoogle Scholar
  13. 13.
    L. Campbell and R. Zi., A Catalog of Two-Dimensional Vortex Patterns, Los Alamos Scientific Laboratory Report No. LA-7384-MS, 1978.Google Scholar
  14. 14.
    K. Fine, A. Cass, W. Flynn, and C. Driscoll, Phys. Rev. Lett. 75, 3277 (1995).CrossRefADSGoogle Scholar
  15. 15.
    D. A. Schecter, D. H. E. Dubin, K. S. Fine, and C. F. Driscoll, Phys. Fluids 11, 905 (1999).CrossRefADSzbMATHGoogle Scholar
  16. 16.
    D. Durkin and J. Fajans, Phys. Fluids 12, 298 (2000).CrossRefADSGoogle Scholar
  17. 17.
    W. T. Kelvin, Mathematical and Physical Papers, iv. (Cambridge University Press, Cambridge, 1878), p. 135.Google Scholar
  18. 18.
    J. Thomson, Treatise on Vortex Rings (Macmillan, London, 1883), p.94.Google Scholar
  19. 19.
    D. Z. Jin and D. H. E. Dubin, Phys. Rev. Lett. 80, 4434 (1998).CrossRefADSGoogle Scholar
  20. 20.
    H. Aref and D. Vainchtein, Nature 392, 769 (1998).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Joel Fajans
    • 1
  • Daniel Durkin
    • 1
  1. 1.Physics DeptU.C. BerkeleyBerkeleyUSA

Personalised recommendations