Skip to main content

Finding an Optimal Inversion Median: Experimental Results

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2149))

Included in the following conference series:

Abstract

We derive a branch-and-bound algorithm to find an optimal inversion median of three signed permutations. The algorithm prunes to manageable size an extremely large search tree using simple geometric properties of the problem and a newly available linear-time routine for inversion distance. Our experiments on simulated data sets indicate that the algorithm finds optimal medians in reasonable time for genomes of medium size when distances are not too large, as commonly occurs in phylogeny reconstruction. In addition, we have compared inversion and breakpoint medians, and found that inversion medians generally score significantly better and tend to be far more unique, which should make them valuable in median-based tree-building algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. In Proceedings 7th Workshop on Algorithms and Data Structures WADS91. Springer Verlag, 2001. to appear in LNCS.

    Google Scholar 

  2. P. Berman and S. Hannenhalli. Fast sorting by reversal. In D. Hirschberg and E. Myers, editors, Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching, pages 168–185, 1996.

    Google Scholar 

  3. M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement. Gene, 172:GC11–GC17, 1996.

    Article  Google Scholar 

  4. A. Caprara. Formulations and complexity of multiple sorting by reversals. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors, Proceedings of the Third Annual International Conference on Computational Molecular Biology (RECOMB-99), pages 84–93, Lyon, France, April 1999.

    Google Scholar 

  5. M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.-S. Wang, T. Warnow, and S. Wyman. An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics, pages 99–122. Kluwer Academic Press, 2000.

    Google Scholar 

  6. M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.-S. Wang, T. Warnow, and S. Wyman. A new fast heuristic for computing the breakpoint phylogeny and experimental phylogenetic analyses of real and synthetic data. In Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology ISMB-2000, pages 104–115, 2000.

    Google Scholar 

  7. T. Dobzhansky and A.H. Sturtevant. Inversions in the chromosomes of Drosophila pseudoobscura. Genetics, 23:28–64, 1938.

    Google Scholar 

  8. D.S. Goldberg, S. McCouch, and J. Kleinberg. Algorithms for constructing comparative maps. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics. Kluwer Academic Press, 2000.

    Google Scholar 

  9. S. Hannenhalli, C. Chappey, E.V. Koonin, and P.A. Pevzner. Genome sequence comparison and scenarios for gene rearrangements: A test case. Genomics, 30:299–311, 1995.

    Article  Google Scholar 

  10. S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In Proceedings of the 27th Annual ACM Symposium on the Theory of Computing, pages 178–189, 1995.

    Google Scholar 

  11. S. Hannenhalli and P.A. Pevzner. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, pages 581–592, 1995.

    Google Scholar 

  12. H. Kaplan, R. Shamir, and R.E. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. SIAM Journal of Computing, 29(3):880–892, 1999.

    Article  MathSciNet  Google Scholar 

  13. A. McLysaght, C. Seoighe, and K.H. Wolfe. High frequency of inversions during eukaryote gene order evolution. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics, pages 47–58. Kluwer Academic Press, 2000.

    Google Scholar 

  14. B.M.E. Moret, D.A. Bader, S. Wyman, T. Warnow, and M. Yan. A new implementation and detailed study of breakpoint analysis. In R.B. Altman, A.K. Dunker, L. Hunter, K. Lauderdale, and T.E. Klein, editors, Pacific Symposium on Biocomputing 2001, pages 583–594. World Scientific Publ. Co., 2001.

    Google Scholar 

  15. B.M.E. Moret, L.-S. Wang, T. Warnow, and S.K. Wyman. New approaches for reconstructing phylogenies from gene-order data. In Proceedings 9th International Conference on Intelligent Systems for Molecular Biology ISMB-2001, 2001. to appear in Bioinformatics.

    Google Scholar 

  16. Pavel A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press, 2000.

    Google Scholar 

  17. D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology, 5(3):555–570, 1998.

    Google Scholar 

  18. D. Sankoff, D. Bryant, M. Deneault, B.F. Lang, and G. Burger. Early eukaryote evolution based on mitochondrial gene order breakpoints. Journal of Computational Biology, 7(3/4):521–535, 2000.

    Article  Google Scholar 

  19. D. Sankoff and N. El-Mabrouk. Genome rearrangement. In T. Jiang, Y. Xu, and M. Zhang, editors, Topics in Computational Biology. MIT Press, 2001.

    Google Scholar 

  20. D. Sankoff, V. Ferretti, and J.H. Nadeau. Conserved segment identification. Journal of Computational Biology, 4(4):559–565, 1997.

    Article  Google Scholar 

  21. D. Sankoff, G. Leduc, N. Antoine, B. Paquin, and B.F. Lang. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences, 89:6575–6579, 1992.

    Article  Google Scholar 

  22. J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Publishing, 1997.

    Google Scholar 

  23. G.A. Watterson, W.J. Ewens, and T.E. Hall. The chromosome inversion problem. Journal of Theoretical Biology, 99:1–7, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siepel, A.C., Moret, B.M.E. (2001). Finding an Optimal Inversion Median: Experimental Results. In: Gascuel, O., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2001. Lecture Notes in Computer Science, vol 2149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44696-6_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44696-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42516-8

  • Online ISBN: 978-3-540-44696-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics