Abstract
We derive a branch-and-bound algorithm to find an optimal inversion median of three signed permutations. The algorithm prunes to manageable size an extremely large search tree using simple geometric properties of the problem and a newly available linear-time routine for inversion distance. Our experiments on simulated data sets indicate that the algorithm finds optimal medians in reasonable time for genomes of medium size when distances are not too large, as commonly occurs in phylogeny reconstruction. In addition, we have compared inversion and breakpoint medians, and found that inversion medians generally score significantly better and tend to be far more unique, which should make them valuable in median-based tree-building algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. In Proceedings 7th Workshop on Algorithms and Data Structures WADS91. Springer Verlag, 2001. to appear in LNCS.
P. Berman and S. Hannenhalli. Fast sorting by reversal. In D. Hirschberg and E. Myers, editors, Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching, pages 168–185, 1996.
M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement. Gene, 172:GC11–GC17, 1996.
A. Caprara. Formulations and complexity of multiple sorting by reversals. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors, Proceedings of the Third Annual International Conference on Computational Molecular Biology (RECOMB-99), pages 84–93, Lyon, France, April 1999.
M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.-S. Wang, T. Warnow, and S. Wyman. An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics, pages 99–122. Kluwer Academic Press, 2000.
M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.-S. Wang, T. Warnow, and S. Wyman. A new fast heuristic for computing the breakpoint phylogeny and experimental phylogenetic analyses of real and synthetic data. In Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology ISMB-2000, pages 104–115, 2000.
T. Dobzhansky and A.H. Sturtevant. Inversions in the chromosomes of Drosophila pseudoobscura. Genetics, 23:28–64, 1938.
D.S. Goldberg, S. McCouch, and J. Kleinberg. Algorithms for constructing comparative maps. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics. Kluwer Academic Press, 2000.
S. Hannenhalli, C. Chappey, E.V. Koonin, and P.A. Pevzner. Genome sequence comparison and scenarios for gene rearrangements: A test case. Genomics, 30:299–311, 1995.
S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In Proceedings of the 27th Annual ACM Symposium on the Theory of Computing, pages 178–189, 1995.
S. Hannenhalli and P.A. Pevzner. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, pages 581–592, 1995.
H. Kaplan, R. Shamir, and R.E. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. SIAM Journal of Computing, 29(3):880–892, 1999.
A. McLysaght, C. Seoighe, and K.H. Wolfe. High frequency of inversions during eukaryote gene order evolution. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics, pages 47–58. Kluwer Academic Press, 2000.
B.M.E. Moret, D.A. Bader, S. Wyman, T. Warnow, and M. Yan. A new implementation and detailed study of breakpoint analysis. In R.B. Altman, A.K. Dunker, L. Hunter, K. Lauderdale, and T.E. Klein, editors, Pacific Symposium on Biocomputing 2001, pages 583–594. World Scientific Publ. Co., 2001.
B.M.E. Moret, L.-S. Wang, T. Warnow, and S.K. Wyman. New approaches for reconstructing phylogenies from gene-order data. In Proceedings 9th International Conference on Intelligent Systems for Molecular Biology ISMB-2001, 2001. to appear in Bioinformatics.
Pavel A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press, 2000.
D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology, 5(3):555–570, 1998.
D. Sankoff, D. Bryant, M. Deneault, B.F. Lang, and G. Burger. Early eukaryote evolution based on mitochondrial gene order breakpoints. Journal of Computational Biology, 7(3/4):521–535, 2000.
D. Sankoff and N. El-Mabrouk. Genome rearrangement. In T. Jiang, Y. Xu, and M. Zhang, editors, Topics in Computational Biology. MIT Press, 2001.
D. Sankoff, V. Ferretti, and J.H. Nadeau. Conserved segment identification. Journal of Computational Biology, 4(4):559–565, 1997.
D. Sankoff, G. Leduc, N. Antoine, B. Paquin, and B.F. Lang. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences, 89:6575–6579, 1992.
J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Publishing, 1997.
G.A. Watterson, W.J. Ewens, and T.E. Hall. The chromosome inversion problem. Journal of Theoretical Biology, 99:1–7, 1982.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siepel, A.C., Moret, B.M.E. (2001). Finding an Optimal Inversion Median: Experimental Results. In: Gascuel, O., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2001. Lecture Notes in Computer Science, vol 2149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44696-6_15
Download citation
DOI: https://doi.org/10.1007/3-540-44696-6_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42516-8
Online ISBN: 978-3-540-44696-5
eBook Packages: Springer Book Archive