Skip to main content

Linear Augmented Reality Registration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2124))

Abstract

Augmented reality requires the geometric registration of virtual or remote worlds with the visual stimulus of the user. This can be achieved by tracking the head pose of the user with respect to the reference coordinate system of virtual objects. If tracking is achieved with head-mounted cameras, registration is known in computer vision as pose estimation. Augmented reality is by definition a real-time problem, so we are interested only in bounded and short computational time. We propose a new linear algorithm for pose estimation. Our algorithm shows better performance than the linear algorithm of Quan and Lan [14] and is comparable to the non-predicted time iterative approach of Kumar and Hanson [8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansar, A., Rodrigues, D., Desai, J.P., Daniilidis, K., Kumar, V., Campos, M.F.M.: Visual and haptic collaborative tele-presence. Computers & Graphics 15(5) (2001) (to appear)

    Google Scholar 

  2. Bruckstein, A.M., Holt, R.J., Huang, T.S., Netravali, A.N.: Optimum fiducials under weak perspective projection. Proc. Int. Conf. on Computer Vision. Kerkyra, Greece, Sep. 20–23 (1999) 67–72

    Google Scholar 

  3. Dementhon, D., Davis, L.S.: Model-based object pose in 25 lines of code. International Journal of Computer Vision 15 (1995) 123–144

    Article  Google Scholar 

  4. Dhome, M., Richetin, M., Lapreste, J.T., Rives, G.: Determination of the attitude of 3-D objects from a single perspective view. IEEE Trans. Pattern Analysis and Machine Intelligence 11 (1989) 1265–1278

    Article  Google Scholar 

  5. Fiore, P.D.: Efficient linear solution of exterior orientation. IEEE Trans. Pattern Analysis and Machine Intelligence 23 (2001) 140–148

    Article  Google Scholar 

  6. Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An analytic solution for the perspective 4-point problem. Computer Vision, Graphics, and Image Processing 47 (1989) 33–44

    Article  Google Scholar 

  7. Horn, B.K.P., Hilden, H.M., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. Journal Opt. Soc. Am. A, A5 (1988) 1127–1135

    Article  MathSciNet  Google Scholar 

  8. Kumar, R. Hanson, A.R.: Robust methods for estimaging pose and a sensitivity analysis. Computer Vision and Image Understanding 60 (1994) 313–342

    Article  Google Scholar 

  9. Kutulakos, K., Vallino, J.: Calibration-free augmented reality. IEEE Trans. on Visualization and Computer Graphics 4(1) (1998) 1–20

    Article  Google Scholar 

  10. Lenz, R., Tsai, R.Y.: Techniques for calibration of the scale factor and image center for high accuracy 3-d machine vision metrology. IEEE Trans. Pattern Analysis and Machine Intelligence 10 (1988) 713–720

    Article  Google Scholar 

  11. Lowe, D.G.: Fitting parameterized three-dimensional models to images. IEEE Trans. Pattern Analysis and Machine Intelligence 13 (1991) 441–450

    Article  Google Scholar 

  12. Lu, C.-P., Hager, G., Mjolsness, E.: Fast and globally convergent pose estimation from video images. IEEE Trans. Pattern Analysis and Machine Intelligence 22 (2000) 610–622

    Article  Google Scholar 

  13. Maybank, S.: Theory of Reconstruction from Image Motion. Sringer-Verlag, Berlin et al. (1993)

    MATH  Google Scholar 

  14. Quan, L., Lan, Z.: Linear n-point camera pose determination. IEEE Trans. Pattern Analysis and Machine Intelligence 21 (1999) 774–780

    Article  Google Scholar 

  15. Seo, Y., Hong, K.-S.: Weakly calibrated video based augmented reality. Proc. Int. Symposium on Augmented Reality. Munich, Germany, Oct. 5–6 (2000) 129–136

    Google Scholar 

  16. Welch, G., Bishop, G.: Scaat: Incremental tracking with incomplete information. ACM SIGGRAPH (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ansar, A., Daniilidis, K. (2001). Linear Augmented Reality Registration. In: Skarbek, W. (eds) Computer Analysis of Images and Patterns. CAIP 2001. Lecture Notes in Computer Science, vol 2124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44692-3_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-44692-3_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42513-7

  • Online ISBN: 978-3-540-44692-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics