Skip to main content

Genetic Programming with Local Improvement for Visual Learning from Examples

  • Conference paper
  • First Online:

Part of the Lecture Notes in Computer Science book series (LNCS,volume 2124)

Abstract

This paper investigates the use of evolutionary programming for the search of hypothesis space in visual learning tasks. The general goal of the project is to elaborate human-competitive procedures for pattern discrimination by means of learning based on the training data (set of images). In particular, the topic addressed here is the comparison between the ‘standard’ genetic programming (as defined by Koza [13]) and the genetic programming extended by local optimization of solutions, so-called genetic local search. The hypothesis formulated in the paper is that genetic local search provides better solutions (i.e. classifiers with higher predictive accuracy) than the genetic search without that extension. This supposition was positively verified in an extensive comparative experiment of visual learning concerning the recognition of handwritten characters.

Keywords

  • visual learning
  • genetic local search
  • learning from examples

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-44692-3_26
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-44692-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic Press, Boston (1987)

    Google Scholar 

  2. Bala, J.W., De Jong, K.A., Pachowicz, P.W.: Multistrategy learning from engineering data by integrating inductive generalization and genetic algorithms. In: Michalski, R.S., Tecuci, G.: Machine learning. A multistrategy approach. Vol. IV. Morgan Kaufmann, San Francisco (1994) 471–487

    Google Scholar 

  3. Chan, P.K., Stolfo, S.J.: Experiments on multistrategy learning by meta-learning. Proceedings of the Second International Conference on Information and Knowledge Management (1993)

    Google Scholar 

  4. De Jong, K. A.: An analysis of the behavior of a class of genetic adaptive systems. Doctoral dissertation, University of Michigan, Ann Arbor (1975)

    Google Scholar 

  5. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Machine Learning, 13 (1993) 161–188

    CrossRef  Google Scholar 

  6. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Goldberg, D.E., Deb, K., Korb, B.: Do not worry, be messy. In: Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo (1991) 24–30

    Google Scholar 

  8. Gonzalez, R.C., Woods, R.E.: Digital image processing. Addison-Wesley, Reading (1992)

    Google Scholar 

  9. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  10. Jaszkiewicz, A.: On the performance of multiple objective genetic local search on the 0/1 knapsack problem. A comparative experiment. Research report, Institute of Computing Science, Poznań University of Technology, RA-002 (2000)

    Google Scholar 

  11. Jelonek, J., Stefanowski, J.: Experiments on solving multiclass learning problems by n2-classifier. In: C. Nedellec, C. Rouveirol (eds.) Lecture Notes in Artificial Intelligence 1398, Springer Verlag, Berlin (1998) 172–177

    Google Scholar 

  12. Johnson, M.P.: Evolving visual routines. Master’s Thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  13. Koza, J.R.: Genetic programming-2. MIT Press, Cambridge (1994)

    Google Scholar 

  14. Koza, J.R., Keane, M., Yu, J., Forrest, H.B., Mydlowiec, W.: Automatic Creation of Human-Competetive Programs and Controllers by Means of Genetic Programming. Genetic Programming and Evolvable Machines, 1 (2000) 121–164

    MATH  CrossRef  Google Scholar 

  15. Krawiec, K.: Constructive induction in picture-based decision support. Doctoral dissertation, Institute of Computing Science, Poznan University of Technology, Poznań (2000)

    Google Scholar 

  16. Krawiec, K.: Constructive induction in learning of image representation. Research Report RA-006, Institute of Computing Science, Poznan University of Technology (2000)

    Google Scholar 

  17. Krawiec, K.: Pairwise Comparison of Hypotheses in Evolutionary Learning. In: Proceedings of The Eighteenth International Conference on Machine Learning (accepted) (2001)

    Google Scholar 

  18. Langley, P.: Elements of machine learning. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  19. LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., et al.: Comparison of learning algorithms for handwritten digit recognition. In: International Conference on Artificial Neural Networks (1995) 53–60

    Google Scholar 

  20. Mitchell, T.M.: An introduction to genetic algorithms. MIT Press, Cambridge, MA (1996)

    Google Scholar 

  21. Mitchell, T.M.: Machine learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  22. Poli, R.: Genetic programming for image analysis. Technical Report CSRP-96-1. The University of Birmingham (1996)

    Google Scholar 

  23. Teller, A., Veloso, M.: A controlled experiment: evolution for learning difficult image classification. Lecture Notes in Computer Science, Vol. 990, Springer (1995) 165–185

    Google Scholar 

  24. Vafaie, H., Imam, I.F.: Feature selection methods: genetic algorithms vs. greedy-like search. In: Proceedings of International Conference on Fuzzy and Intelligent Control Systems (1994)

    Google Scholar 

  25. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. In: Motoda, H., Liu H. (Eds.): Feature extraction, construction, and subset selection: A data mining perspective. Kluwer Academic, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krawiec, K. (2001). Genetic Programming with Local Improvement for Visual Learning from Examples. In: Skarbek, W. (eds) Computer Analysis of Images and Patterns. CAIP 2001. Lecture Notes in Computer Science, vol 2124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44692-3_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-44692-3_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42513-7

  • Online ISBN: 978-3-540-44692-7

  • eBook Packages: Springer Book Archive

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.