Skip to main content

Extended Temporal Logic Revisited

  • Conference paper
  • First Online:
CONCUR 2001 — Concurrency Theory (CONCUR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2154))

Included in the following conference series:

Abstract

A key issue in the design of a model-checking tool is the choice of the formal language with which properties are specified. It is now recognized that a good language should extend linear temporal logic with the ability to specify all ω-regular properties. Also, designers, who are familiar with finite-state machines, prefer extensions based on automata than these based on fixed points or propositional quantification. Early extensions of linear temporal logic with automata use nondeterministic Büchi automata. Their drawback has been inability to refer to the past and the asymmetrical structure of nondeterministic automata. In this work we study an extension of linear temporal logic, called ETL2a, that uses two-way alternating automata as temporal connectives. Twoway automata can traverse the input word back and forth and they are exponentially more succinct than one-way automata. Alternating automata combine existential and universal branching and they are exponentially more succinct than nondeterministic automata. The rich structure of two-way alternating automata makes ETL2a a very powerful and convenient logic. We show that ETL2a formulas can be translated to nondeterministic Büchi automata with an exponential blow up. It follows that the satisfiability and model-checking problems for ETL2a are PSPACE-complete, as are the ones for LTL and its earlier extensions with automata. So, in spite of the succinctness of two-way and alternating automata, the advantages of ETL2a are obtained without a major increase in space complexity. The recent acceptance of alternating automata by the industry and the development of symbolic procedures for handling them make us optimistic about the practicality of ETL2a.

Supported in part by BSF grant 9800096.

Supported in part by NSF grant CCR-9700061, NSF grant CCR-9988322, BSF grant 9800096, and by a grant from the Intel Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Armoni, L. Fix, A. Flaisher, R. Gerth, T. Kanza, A. Landver, S. Mador Haim, A. Tiemeyer, M.Y. Vardi, and Y. Zber. The ForSpec compiler. Submitted, 2001.

    Google Scholar 

  2. R. Armoni, L. Fix, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador Haim, A. Tiemeyer, E. Singerman, and M.Y. Vardi. The ForSpec temporal logic: A new temporal property-specification logic. Submitted, 2001.

    Google Scholar 

  3. B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Temporal Logic in Specification, LNCS 398, 62–74. Springer-Verlag, 1987.

    Google Scholar 

  4. I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and system for practical formal verification of reactive hardware. In 6th CAV, LNCS 818, 182–193, Springer-Verlag, 1994.

    Google Scholar 

  5. I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In 10th CAV, LNCS 1427, 184–194. Springer-Verlag, 1998.

    Google Scholar 

  6. J.C. Birget. State-complexity of finite-state devices, state compressibility and incompressibility. Mathematical Systems Theory, 26(3):237–269, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Barringer and R. Kuiper. Hierarchical development of concurrent systems in a framework. In Seminar in Concurrency, LNCS 197, 35–61. Springer-Verlag, 1985.

    Google Scholar 

  8. J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. TCS, 10:19–35, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  9. E.M. Clarke, O. Grumberg, and R.P. Kurshan. A synthesis of two approaches for verifying finite state concurrent systes. Logic and Computation, 2(5):605–618, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

    Google Scholar 

  11. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for Computing Machinery, 28(1):114–133, January 1981.

    Google Scholar 

  12. D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata. Journal of the ACM, 41(3):517–539, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. E.A. Emerson and R.J. Trefler. Generalized quantitative temporal reasoning: An automata theoretic approach. In TAPSOFT, LNCS 1214, 189–200. Springer, 1997.

    Google Scholar 

  14. B. Finkbeiner. Symbolic refinement checking with nondeterministic BDDs. In TACAS, LNCS 2031. Springer-Verlag, 2001.

    Google Scholar 

  15. N. Francez. Program verification. Int. Computer Science. Addison-Weflay, 1992.

    Google Scholar 

  16. D. Gabbay. The declarative past and imperative future. In Temporal Logic in Specification, LNCS 398, 407–448. Springer-Verlag, 1987.

    Google Scholar 

  17. N. Globerman and D. Harel. Complexity results for two-way and multipebble automata and their logics. TCS, 143:161–184, 1996.

    Article  MathSciNet  Google Scholar 

  18. J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic. Annals of Pure and Applied Logic, 96(1–3):187–207, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  19. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In 5th ISTCS, 147–158. IEEE Computer Society Press, 1997.

    Google Scholar 

  20. O. Kupferman and M.Y. Vardi. μ-calculus synthesis. In 25th MFCS, LNCS 1893, 497–507. Springer-Verlag, 2000.

    Google Scholar 

  21. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs, LNCS 193, 196–218, Springer-Verlag, 1985.

    Google Scholar 

  22. A. R. Meyer. Weak monadic second order theory of successor is not elementary recursive. In Proc. Logic Colloquium, Vol. 453 of Lecture Notes in Mathematics, 132–154. Springer-Verlag, 1975.

    Google Scholar 

  23. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag, Berlin, January 1992.

    Google Scholar 

  24. D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order logic. TCS, 37:51–75, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  25. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. TCS, 54:267–276, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  26. D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic automata: New results and new proofs of theorems of Rabin, McNaughton and Safra. TCS, 141:69–107, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  27. D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory of the tree and its complexity. In 13th IC ALP, LNCS 226, 1986.

    Google Scholar 

  28. N. Piterman. Extending temporal logic with ω-automata. M.Sc. Thesis, The Weizmann Institute of Science, Israel, 2000, http://www.wisdom.weizmann.ac.il/home/nirp/public_html/publications/msc_thesis.ps.

    Google Scholar 

  29. A. Pnueli. The temporal semantics of concurrent programs. TCS, 13:45–60, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer Institutes, pages 123–144. Springer-Verlag, 1985.

    Google Scholar 

  31. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic. Journal ACM, 32:733–749, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  32. A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with applications to temporal logic. TCS, 49:217–237, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Thomas. A combinatorial approach to the theory of ω-automata. Information and Computation, 48:261–283, 1981.

    MATH  Google Scholar 

  34. M.Y. Vardi. A temporal fixpoint calculus. In 15th POPL, pages 250–259, 1988.

    Google Scholar 

  35. M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency: Structure versus Automata, LNCS 1043, 238–266, 1996.

    Google Scholar 

  36. M.Y. Vardi. Reasoning about the past with two-way automata. In 25th ICALP LNCS 1443, 628–641. Springer-Verlag, 1998.

    Google Scholar 

  37. M.Y. Vardi and P. Wolper. Yet another process logic. In Logics of Programs, LNCS 164, 501–512. Springer-Verlag, 1984.

    Google Scholar 

  38. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1):1–37, November 1994.

    Google Scholar 

  39. P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1–2):72–99, 1983.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kupferman, O., Piterman, N., Vardi, M.Y. (2001). Extended Temporal Logic Revisited. In: Larsen, K.G., Nielsen, M. (eds) CONCUR 2001 — Concurrency Theory. CONCUR 2001. Lecture Notes in Computer Science, vol 2154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44685-0_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-44685-0_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42497-0

  • Online ISBN: 978-3-540-44685-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics