Bounded Reachability Checking with Process Semantics

  • Keijo Heljanko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2154)


Bounded model checking has been recently introduced as an efficient verification method for reactive systems. In this work we apply bounded model checking to asynchronous systems. More specifically, we translate the bounded reachability problem for 1-safe Petri nets into constrained Boolean circuit satisfiability. We consider three semantics: process, step, and interleaving semantics. We show that process semantics has often the best performance for bounded reachability checking.


Model Check Boolean Function Process Semantic Boolean Circuit Bound Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory. Theoretical Computer Science, 55(1):87–136, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. Best and C. Fernández. Nonsequential Processes: A Petri Net View, volume 13 of EATCS monographs on Theoretical Computer Science. Springer-Verlag, 1988.Google Scholar
  3. 3.
    A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99), pages 193–207. Springer, 1999. LNCS 1579.CrossRefGoogle Scholar
  4. 4.
    J. C. Corbett. Evaluating deadlock detection methods for concurrent software. Technical report, Department of Information and Computer Science, University of Hawaii at Manoa, 1995.Google Scholar
  5. 5.
    V. Diekert and Y. Métivier. Partial commutation and traces. In Handbook of formal languages, Vol. 3, pages 457–534. Springer, Berlin, 1997.Google Scholar
  6. 6.
    J. Esparza. Decidability and complexity of Petri net problems-An introduction. In Lectures on Petri Nets I: Basic Models, pages 374–428. Springer-Verlag, 1998. LNCS 1491.Google Scholar
  7. 7.
    J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algorithm. In Proceedings of 2nd International Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), pages 87–106, 1996. LNCS 1055.Google Scholar
  8. 8.
    J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algorithm, 2001. Accepted for publication in Formal Methods for System Design.Google Scholar
  9. 9.
    K. Heljanko and I. Niemelä. Answer set programming and bounded model checking. In Proceedings of the AAAI Spring 2001 Symposium on Answer Set Programming: Towards Efficient and Scalable Knowledge Representation and Reasoning, pages 90–96, Stanford, USA, March 2001. AAAI Press, Technical Report SS-01-01.Google Scholar
  10. 10.
    T. A. Junttila and I. Niemelä. Towards an efficient tableau method for Boolean circuit satisfiability checking. In Computational Logic-CL 2000; First International Conference, pages 553–567, London, UK, 2000. LNCS 1861.CrossRefGoogle Scholar
  11. 11.
    H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and stochastic search. In Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, pages 1194–1201. AAAI Press / MIT Press, 1996.Google Scholar
  12. 12.
    H. C. M. Kleijn and M. Koutny. Process semantics of P/T-nets with inhibitor arcs. In Proceedings of the 21st International Conference on Application and Theory of Petri Nets, pages 261–281, 2000. LNCS 1825.CrossRefGoogle Scholar
  13. 13.
    S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proceedings of 9th International Conference on Computer-Aided Verification (CAV’ 97), pages 352–363, 1997. LNCS 1254.Google Scholar
  14. 14.
    S. Merkel. Verification of fault tolerant algorithms using PEP. Technical Report TUM-19734, SFB-Bericht Nr. 342/23/97 A, Technische Universität München, München, Germany, 1997.Google Scholar
  15. 15.
    I. Niemelä. Logic programming with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241–273, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. Römer. Theorie und Praxis der Netzentfaltungen als Basis für die Verifikation nebenläufiger Systeme. PhD thesis, Technische Universität München, Fakultät für Informatik, München, Germany, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Keijo Heljanko
    • 1
  1. 1.Laboratory for Theoretical Computer ScienceHelsinki University of TechnologyHutFinland

Personalised recommendations