Skip to main content

Solubility equilibrium gradients in the analytical ultracentrifuge: an approach towards the isolation of critical crystal nuclei in solution

  • Conference paper
  • First Online:
Book cover Analytical Ultracentrifugation VI

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 119))

Abstract

Sedimentation equilibrium methods which are able to establish a solubility gradient for inorganic species in an ultracentrifugal field are presented. These methods are generally based on the concepts of density gradient and sedimentation equilibrium ultracentrifugation. However, in addition to the formation of a density or an equilibrium gradient, physicochemical parameters such as the pH or the solvent quality are varied throughout the solution column if appropriate high-density or high-molar-mass solutes are chosen or a mixture of solvents with different density is applied. This is demonstrated for two types of solubility gradients including for the case of a pH gradient; parameters for the adjustment of the overall pH are discussed. pH gradients were formed up to 3 pH units and are sensitive to addition of electrolytes, so they can only be applied to sparingly soluble salts. The gradual variation of the solubility of inorganic particles leads to the dissolution of the particles upon sedimentation when the dissolution point is reached. The ionic species formed show increased diffusion compared to the sedimenting particles, so they can diffuse back to regions of lower solubility and thus form a crystal again. This finally leads to an equilibrium situation for the critical crystal nucleus. In the case of a pH gradient with CdS, it is demonstrated that a transition from particles to dissolved ions indeed takes place and can be monitored in the analytical ultracentrifuge. For BaCrO4, the transition to the more soluble BaCr2O7 with decreasing pH can readily be monitored via the associated spectral changes, clearly demonstrating the possibility to perform chemical reactions in a pH gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibbs JW (1961) The collected works of JW Gibbs. Yale University Press, New Haven

    Google Scholar 

  2. Kashchiev D (1982) J Chem Phys 76:5098

    Article  CAS  Google Scholar 

  3. Oxtoby DW, Kashchiev D (1994) J Chem Phys 100:7665

    Article  CAS  Google Scholar 

  4. Oxtoby DW (1998) Acc Chem Res 31:91

    Article  CAS  Google Scholar 

  5. Mutaftschiev B (1993) In: Hurle DTJ (ed) Handbook of crystal growth. Elsevier, Amsterdam, p 189

    Google Scholar 

  6. Yau ST, Vekilov PG (2000) Nature 406:494

    Article  CAS  Google Scholar 

  7. Oxtoby DW (2000) Nature 406:464

    Article  CAS  Google Scholar 

  8. Cölfen H, Pauck T (1997) Colloid Polym Sci 275:175

    Article  Google Scholar 

  9. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmüller A, Weller H (1994) J Phys Chem 98:7665

    Article  CAS  Google Scholar 

  10. Hollemann AE, Wiberg N (1985) Lehrbuch der anorganischen Chemie, 91st edn. de Gruyter, New York, p 1042

    Google Scholar 

  11. Cölfen H, Pauck T, Antonietti M (1997) Progr Colloid Polym Sci 107:136

    Article  Google Scholar 

  12. Börger L, Cölfen H (1999) Progr Colloid Polym Sci 113:23

    Article  Google Scholar 

  13. Börger L, Cölfen H, Antonietti M (2000) Colloids Surf A 163:29

    Article  Google Scholar 

  14. Qi L, Cölfen H, Antonietti M (2000) Angew Chem Int Ed Engl 39:604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Borchard A. Straatmann

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this paper

Cite this paper

Lucas, G., Börger, L., Cölfen, H. (2002). Solubility equilibrium gradients in the analytical ultracentrifuge: an approach towards the isolation of critical crystal nuclei in solution. In: Borchard, W., Straatmann, A. (eds) Analytical Ultracentrifugation VI. Progress in Colloid and Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44672-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44672-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42489-5

  • Online ISBN: 978-3-540-44672-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics