Skip to main content

Modeling of protein hydration with respect to X-ray scattering and hydrodynamics

  • Conference paper
  • First Online:
Analytical Ultracentrifugation VI

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 119))

Abstract

Hydration contributions of proteins can be taken into account by advanced modeling techniques starting from the atomic-level structure. Bead modeling may be used both for individual amino acid residues and individual water molecules placed at preferred positions on the protein surface. The exact calculation of the molecular volumes and surfaces of the proteins under analysis is of special importance. Among the approaches tested, the programs MSRoll and SIMS turned out to be particularly effective for calculating “dot surfaces”. The dot surface points and the normal vectors to these points were used for placing water molecules in definite positions and under special constraints on the protein surface (program HYDMODEL). After data reduction of the hydrated protein models to appropriate numbers of beads, hydrodynamic parameters were predicted by means of the program HYDRO. In context with the establishment of hydration models, a variety of input parameters were critically tested: calculation approaches, number of surface dot points, probe radius, volume/density, as well as position and number of bound water molecules, distance selection for water molecules. X-ray scattering properties were calculated on the basis of the number of excess electrons and the radii and coordinates of the beads, hydrodynamic quantities only from the bead radii and coordinates. The examples studied comprise the enzymes citrate synthase and catalase. The approaches applied may be used to predict structural and hydrodynamic properties of hydrated proteins more realistically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kumosinski TF, Pessen H (1985) Methods Enzymol 117:154–182

    Article  CAS  Google Scholar 

  2. García de la Torre J (1989) In: Harding SE, Rowe AJ (eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge, pp 3–31

    Google Scholar 

  3. Harding SE (1989) In: Harding SE, Rowe AJ (eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge, pp 32–56

    Google Scholar 

  4. Harding SE (1995) Biophys Chem 55:69–93

    Article  CAS  Google Scholar 

  5. Byron O (2000) Methods Enzymol 321:278–304

    Article  CAS  Google Scholar 

  6. García de la Torre J, Huertas ML, Carrasco B (2000) Biophys J 78:719–730

    Google Scholar 

  7. Ashton AW, Boehm MK, Gallimore JR, Pepys MB, Perkins SJ (1997) J Mol Biol 272:408–422

    Article  CAS  Google Scholar 

  8. Byron O (1997) Biophys J 72:408–415

    Article  CAS  Google Scholar 

  9. (a) Spotorno B, Piccinini L, Tassara G, Ruggiero C, Nardini M, Molina F, Rocco M(1997) Eur Biophys J 25:373–384

    Article  CAS  Google Scholar 

  10. (b)(1997) Eur Biophys J erratum 26:417

    Google Scholar 

  11. Zipper P, Durchschlag H (1997) Prog Colloid Polym Sci 107:58–71

    Article  CAS  Google Scholar 

  12. Zipper P, Durchschlag H (1998) Biochem Soc Trans 26:726–731

    CAS  Google Scholar 

  13. Zipper P, Durchschlag H (2000) J Appl Crystallogr 33:788–792

    Article  CAS  Google Scholar 

  14. Durchschlag H, Zipper P (2001) Prog Colloid Polym Sci: 119:121–130

    Article  Google Scholar 

  15. Zipper P, Krebs A, Durchschlag H (2001) Prog Colloid Polym Sci: 119: 141–148

    Article  Google Scholar 

  16. Cooper A, Harding SE (eds) (2001) Biophys Chem (in press)

    Google Scholar 

  17. Durchschlag H, Zipper P (2001) Biophys Chem (in press)

    Google Scholar 

  18. Bairoch A, Apweiler R (2000) Nucleic Acids Res 28:45–48

    Article  CAS  Google Scholar 

  19. Kuntz ID (1971) J Am Chem Soc 93:514–516

    Article  CAS  Google Scholar 

  20. Durchschlag H, Zipper P (1996) J Mol Struct 383:223–229

    Article  CAS  Google Scholar 

  21. Durchschlag H, Zipper P (1997) J Appl Crystallogr 30:1112–1124

    Article  CAS  Google Scholar 

  22. Durchschlag H, Zipper P (1998) Biochem Soc Trans 26:731–736

    CAS  Google Scholar 

  23. Durchschlag H, Zipper P (1999) Prog Colloid Polym Sci 113:87–105

    Article  CAS  Google Scholar 

  24. Durchschlag H, Zipper P, Purr G, Jaenicke R (1996) Colloid Polym Sci 274:117–137

    Article  CAS  Google Scholar 

  25. Chacón P, Díaz JF, Morán F, Andreu JM (2000) J Mol Biol 299:1289–1302

    Article  CAS  Google Scholar 

  26. Kumosinski TF, Pessen H (1982) Arch Biochem Biophys 219:89–100

    Article  CAS  Google Scholar 

  27. Durchschlag H, Zipper P (1997) Prog Colloid Polym Sci 107:43–57

    Article  CAS  Google Scholar 

  28. Remington S, Wiegand G, Huber R (1982) J Mol Biol 158:111–152

    Article  CAS  Google Scholar 

  29. Wiegand G, Remington S, Deisenhofer J, Huber R (1984) J Mol Biol 174:205–219

    Article  CAS  Google Scholar 

  30. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE (1998) Acta Crystallogr Sect D 54:1078–1084

    Article  CAS  Google Scholar 

  31. Durchschlag H, Zipper P, Wilfing R, Purr G (1991) J Appl Crystallogr 24:822–831

    Article  Google Scholar 

  32. Wu J-Y, Yang JT (1970) J Biol Chem 245:212–218

    CAS  Google Scholar 

  33. Singh M, Brooks GC, Srere PA (1970) J Biol Chem 245:4636–4640

    CAS  Google Scholar 

  34. Fita I, Murthy MRN, Rossmann MG, Silva AM (1986) Acta Crystallogr Sect B 42:497–515

    Article  Google Scholar 

  35. Malmon AG (1957) Biochim Biophys Acta 26:233–240

    Article  CAS  Google Scholar 

  36. Lee JC, Timasheff SN (1974) Biochemistry 13:257–265

    Article  CAS  Google Scholar 

  37. Sumner JB, Gralén N (1938) J Biol Chem 125:33–36

    CAS  Google Scholar 

  38. Tanford C, Lovrien R (1962) J Am Chem Soc 84:1892–1896

    Article  CAS  Google Scholar 

  39. Sumner JB, Dounce AL, Frampton VL (1940) J Biol Chem136:343–356

    CAS  Google Scholar 

  40. Connolly ML (1983) Science 221:709–713

    Article  CAS  Google Scholar 

  41. Connolly ML (1985) J Am Chem Soc 107:1118–1124

    Article  CAS  Google Scholar 

  42. Connolly ML (1993) J Mol Graphics 11:139–141

    Article  CAS  Google Scholar 

  43. Vorobjev YN, Herman J (1997) Biophys J 73:722–732

    CAS  Google Scholar 

  44. Perkins SJ (1986) Eur J Biochem 157:169–180

    Article  CAS  Google Scholar 

  45. Gerstein M, Chothia C (1996) Proc Natl Acad Sci USA 93:10167–10172

    Article  CAS  Google Scholar 

  46. Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Proc Natl Acad Sci USA 95:2267–2272

    Article  CAS  Google Scholar 

  47. Ebel C, Eisenberg H, Ghirlando R (2000) Biophys J 78:385–393

    CAS  Google Scholar 

  48. García de la Torre J, Navarro S, López Martínez MC, Díaz FG, López Cascales JJ (1994) Biophys J 67:530–531

    Google Scholar 

  49. Carrasco B, García de la Torre J, Zipper P (1999) Eur Biophys J 28:510–515

    Article  CAS  Google Scholar 

  50. Zipper P, Durchschlag H (1999) Prog Colloid Polym Sci 113:106–113

    Article  CAS  Google Scholar 

  51. Glatter O, Kratky O (eds) (1982) Small-angle X-ray scattering. Academic, London

    Google Scholar 

  52. Zipper P, Durchschlag H (2001) Physica A (in press)

    Google Scholar 

  53. Sayle RA, Milner-White EJ (1995) Trends Biochem Sci20:374–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Borchard A. Straatmann

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this paper

Cite this paper

Durchschlag, H., Zipper, P. (2002). Modeling of protein hydration with respect to X-ray scattering and hydrodynamics. In: Borchard, W., Straatmann, A. (eds) Analytical Ultracentrifugation VI. Progress in Colloid and Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44672-9_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-44672-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42489-5

  • Online ISBN: 978-3-540-44672-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics