Neural Network Analysis of Dynamic Contrast-Enhanced MRI Mammography

  • Axel Wismüller
  • Oliver Lange
  • Dominik R. Dersch
  • Klaus Hahn
  • Gerda L. Leinsinger
Conference paper

DOI: 10.1007/3-540-44668-0_138

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2130)
Cite this paper as:
Wismüller A., Lange O., Dersch D.R., Hahn K., Leinsinger G.L. (2001) Neural Network Analysis of Dynamic Contrast-Enhanced MRI Mammography. In: Dorffner G., Bischof H., Hornik K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg

Abstract

We present a neural network clustering approach to the analysis of dynamic contrast-enhanced magnetic resonance imaging (MRI) mammography time-series. In contrast to conventional extraction of a few voxel-based perfusion parameters, neural network clustering does not discard information contained in the complete signal dynamics time-series data. We performed exploratory data analysis in patients with breast lesions classified as indeterminate from clinical findings and conventional X-ray mammography. Minimal free energy vector quantization provided a self-organized segmentation of voxels w.r.t. fine-grained differences of signal amplitude and dynamics, thus identifying the lesions from surrounding tissue and enabling a subclassification within the lesions with regard to regions characterized by different MRI signal time-courses. We conclude that neural network clustering can provide a useful extension to the conventional visual inspection of interactively defined regions-of-interest. Thus, it can contribute to the diagnosis of indeterminate breast lesions by non-invasive imaging.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Axel Wismüller
    • 1
  • Oliver Lange
    • 1
  • Dominik R. Dersch
    • 2
  • Klaus Hahn
    • 1
  • Gerda L. Leinsinger
    • 1
  1. 1.Institut für Radiologische DiagnostikLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Hypovereinsbank AGMünchenGermany

Personalised recommendations