Skip to main content

On the Derandomization of Constant Depth Circuits

  • Conference paper
  • First Online:
Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques (RANDOM 2001, APPROX 2001)

Abstract

Nisan [18] and Nisan and Wigderson [19] have constructed a pseudo-random generator which fools any family of polynomial-size constant depth circuits. At the core of their construction is the result due to HÃ¥stad [10] that no circuit of depth d and size \( 2^{n^{1/d} } \) can even weakly approximate (to within an inverse exponential factor) the parity function. We give a simpler proof of the inapproximability of parity by constant depth circuits which does not use the Hastad Switching Lemma. Our proof uses a well-known hardness amplification technique from derandomization: the XOR lemma. This appears to be the first use of the XOR lemma to prove an unconditional inapproximability result for an explicit function (in this case parity). In addition, we prove that BPAC0 can be simulated by uniform quasipolynomial size constant depth circuits, improving on results due to Nisan [18] and Nisan and Wigderson [19].

Supported in part by NSF grant CCR-97-01304.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. ∑1 1-Formulae on Finite Structures. Annals of Pure and Applied Logic, Vol. 24, 1983.

    Google Scholar 

  2. M. Ajtai. Approximate Counting with Uniform Constant-Depth Circuits. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 13, 1993.

    Google Scholar 

  3. M. Ajtai and M. Ben-Or. A Theorem on Probabilistic Constant Depth Computations. In ACM Symposium on Theory of Computing (STOC), 1984.

    Google Scholar 

  4. J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The Expressive Power of Voting Polynomials. Combinatorica, 14(2), 1994.

    Google Scholar 

  5. L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Beame. A Switching Lemma Primer. Technical Report UW-CSE-95-07-01, Department of Computer Science and Engineering, University of Washington, November 1994.

    Google Scholar 

  7. R. Beigel When do Extra Majority Gates Help? Polylog(n) Majority Gates are Equivalent to One. Computational Complexity, 4, 314–324, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Beigel, N. Reingold, and D. Spielman. The Perceptron Strikes Back. In Proceedings of the 6th Annual Conference on Structure in Complexity Theory (SCTC’ 91), June 1991.

    Google Scholar 

  9. M. Furst, J. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory, 17(1), 1984.

    Google Scholar 

  10. J. HÃ¥stad. Computational Limitations of Small Depth Circuits. MIT-PRESS, 1986.

    Google Scholar 

  11. R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pages 538–545. IEEE, 1995.

    Google Scholar 

  12. R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near Optimal Conversion of Hardness into Pseudorandomness. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, pages 538–545. IEEE, 1999.

    Google Scholar 

  13. R. Impagliazzo and A. Wigderson. P=BPP unless E has sub-exponential circuits: Derandomizing the XOR lemma. In Proceedings of the 29th ACM Symposium on the Theory of Computing, pages 220–229. ACM, 1997.

    Google Scholar 

  14. A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the polynomial hierarchy collapses. In Proceedings of the 31st ACM Symposium on the Theory of Computing, pages 659–667. ACM, 1999.

    Google Scholar 

  15. A. Klivans and R. Servedio. Boosting and Hard-Core Sets. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS), 1999.

    Google Scholar 

  16. N. Linial, Y. Mansour, and N. Nisan. Constant Depth Circuits, Fourier Transforms, and Learnability. Journal of the ACM, 40(3), July 1993.

    Google Scholar 

  17. M. Luby, B. Velickovic, and A. Wigderson. Deterministic Approximate Counting of Depth-2 Circuits. In Proceedings of the Second Israeli Symposium on Theory of Computing and Systems, 1993.

    Google Scholar 

  18. N. Nisan. Pseudorandom Bits for Constant Depth Circuits. Combinatorica, 11, 1991.

    Google Scholar 

  19. N. Nisan and A. Wigderson. Hardness vs. Randomness. Journal of Computer and System Sciences, 49:149–167, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  21. A. Razborov. Lower Bounds on the Size of Bounded Depth Circuits over a Complete Basis with Logical Addition. MATHNAUSSR: Mathematical Notes of the Academ of Sciences of the USSR, 41, 1987.

    Google Scholar 

  22. R. Servedio. Smooth Boosting and Learning with Malicious Noise. To Appear, 2001.

    Google Scholar 

  23. R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, May 1987.

    Google Scholar 

  24. L. Stockmeyer. The Complexity of Approximate Counting. In ACM Symposium on Theory of Computing (STOC), 1983.

    Google Scholar 

  25. M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma. Technical Report TR-98-074, Electronic Colloquium on Computational Complexity, 2000. Revision 2.

    Google Scholar 

  26. L. Trevisan. Construction of extractors using pseudo-random generators. In Proceedings of the 31st ACM Symposium on the Theory of Computing, pages 141–148. ACM, 1999.

    Google Scholar 

  27. L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer Science, 47:85–93, 1986.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klivans, A.R. (2001). On the Derandomization of Constant Depth Circuits. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques. RANDOM APPROX 2001 2001. Lecture Notes in Computer Science, vol 2129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44666-4_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44666-4_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42470-3

  • Online ISBN: 978-3-540-44666-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics