Skip to main content

Using Complex Semidefinite Programming for Approximating MAX E2-LIN3

  • Conference paper
  • First Online:
Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques (RANDOM 2001, APPROX 2001)

Abstract

A number of recent papers on approximation algorithms have used the square roots of unity, -1 and 1 to represent binary decision variables for problems in combinatorial optimization, and have relaxed these to unit vectors in real space using semidefinite programming in order to obtain near optimal solutions to these problems. In this talk, we consider using the cube roots of unity, 1, e i2π/3, and e i4π/3, to represent ternary decision variables for problems in combinatorial optimization. Here the natural relaxation is that of unit vectors in complex space. We use an extension of semidefinite programming to complex space to solve the natural relaxation, and use a natural extension of the random hyperplane technique to obtain near-optimal solutions to the problems. In particular, we consider the problem of maximizing the total weight of satisfied equations x u - x vc (mod 3) and inequations x u - x vc (mod 3), where x u ∈ {0,1, 2} for all u. This problem can be used to model the MAX 3-CUT problem and a directed variant we call MAX 3-DICUT. For the general problem, we obtain a 0.79373-approximation algorithm. If the instance contains only inequations (as it does for MAX 3-CUT), we obtain a performance guarantee of 7/12 + 3/4π2 arccos2(−1/4)≈0.83601. Although quite different at first glance, our relaxation and algorithm appear to be equivalent to those of Frieze and Jerrum (1997) and de Klerk, Pasechnik, and Warners (2000) for MAX 3-CUT, and the ones of Andersson, Engebretson, and Håstad (1999) for the general case.

This talk is based on a joint result with David Williamson, to appear in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.X. Goemans and D.P. Williamson, “Approximation Algorithms for MAX 3-CUT and Other Problems Via Complex Semidefinite Programming”, in the Proceedings of the 33rd Symposium on the Theory of Computing, Crete, 2001, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goemans, M.X. (2001). Using Complex Semidefinite Programming for Approximating MAX E2-LIN3. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques. RANDOM APPROX 2001 2001. Lecture Notes in Computer Science, vol 2129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44666-4_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44666-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42470-3

  • Online ISBN: 978-3-540-44666-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics