Skip to main content

The Monadic Theory of Morphic Infinite Words and Generalizations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1893))

Abstract

We present new examples of infinite words which have a decidable monadic theory. Formally, we consider structures 〈ℕ,<P〉 which expand the ordering 〈ℕ,<〉 of the natural numbers by a unary predicate P; the corresponding infinite word is the characteristic 0-1-sequence xP of P. We show that for a morphic predicate P the associated monadic second-order theory MThhℕ,<P〉 is decidable, thus extending results of Elgot and Rabin (1966) and Maes (1999). The solution is obtained in the framework of semigroup theory, which is then connected to the known automata theoretic approach of Elgot and Rabin. Finally, a large class of predicates P is exhibited such that the monadic theory MTh〈ℕ〈, P〉 is decidable, which unifies and extends the previously known examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jorge Almeida. Finite Semigroups and Universal Algebra. World Scientific, 1994.

    Google Scholar 

  2. Frédérique Bassino, Marie-Pierre Béal, and Dominique Perrin. Length distributions and regular sequences. Technical report, IGM, 2000.

    Google Scholar 

  3. P. T. Bateman, C. G. Jockusch, and A. R. Woods. Decidability and undecidibility of theories of with a predicate for the primes. J. Symb. Logic, 58:672–687, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  4. Jean Berstel. Axel Thue’s work on repetitions in words. In P. Leroux and C. Reutenauer, editors, Séries formelles et combinatoire algébrique, pages 65–80. Publications du LaCIM, Université du Québec á Montréal, 1990.

    Google Scholar 

  5. Jean Berstel and Patrice Séébold. Algebraic Combinatorics on Words, chapter 2, pages 40–96. Cambridge University Press, 2000.

    Google Scholar 

  6. J. Richard Büchi. On a decision method in the restricted second-order arithmetic. In Proc. Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960, pages 1–14. Stanford University Press, 1962.

    Google Scholar 

  7. J. Richard Büchi and L. H. Landweber. Definability in the monadic second-order theory of successor. J. Symb. Logic, 31:169–181, 1966.

    Article  Google Scholar 

  8. Calvin C. Elgot and Micheal O. Rabin. Decidability and undecidibility of extensions of second (first) order theory of (generalized) successor. J. Symb. Logic, 31(2):169–181, 1966.

    Article  MATH  Google Scholar 

  9. F. A. Hosch. Decision Problems in Büchi’s Sequential Calculus. Dissertation, University of New Orleans, Louisiana, 1971.

    Google Scholar 

  10. Arnaud Maes. An automata theoretic decidability proof for the first-order theory of 〈ℕ〈, P〉 with morphic predicate P. Journal of Automata, Languages and Combinatorics, 4:229–245, 1999.

    MATH  MathSciNet  Google Scholar 

  11. C. Michaux and R. Villemaire. Open questions around Büchi and presburger arithmetics. In Wilfrid Hodges et al., editors, Logic: from foundations to applications. European logic colloquium, pages 353–383, Oxford, 1996. Clarendon Press.

    Google Scholar 

  12. Arto Salomaa and Matti Soittola. Automata-Theoric Aspects of Formal Power Series. Springer-Verlag, New York, 1978.

    Google Scholar 

  13. D. Siefkes. Decidable extensions of monadic second order successor arithmetic. In J. Doerr and G. Hotz, editors, Automatentheorie und Formale Sprachen, pages 441–472, Mannheim, 1970. B.I. Hochschultaschenbücher.

    Google Scholar 

  14. Wolfgang Thomas. The theory of successor with an extra predicate. Math. Ann., 237 (121–132), 1978.

    Article  MATH  MathSciNet  Google Scholar 

  15. Wolfgang Thomas. On the bounded monadic theory of well-ordered structures. J. Symb. Logic, 45:334–338, 1980.

    Article  MATH  Google Scholar 

  16. Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 4, pages 133–191. Elsevier, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carton, O., Thomas, W. (2000). The Monadic Theory of Morphic Infinite Words and Generalizations. In: Nielsen, M., Rovan, B. (eds) Mathematical Foundations of Computer Science 2000. MFCS 2000. Lecture Notes in Computer Science, vol 1893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44612-5_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-44612-5_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67901-1

  • Online ISBN: 978-3-540-44612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics