Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

Annual International Cryptology Conference

CRYPTO 2000: Advances in Cryptology — CRYPTO 2000 pp 533–543Cite as

  1. Home
  2. Advances in Cryptology — CRYPTO 2000
  3. Conference paper
Almost Independent and Weakly Biased Arrays: Efficient Constructions and Cryptologic Applications

Almost Independent and Weakly Biased Arrays: Efficient Constructions and Cryptologic Applications

  • Jürgen Bierbrauer5 &
  • Holger Schellwat6 
  • Conference paper
  • First Online: 01 January 2000
  • 2368 Accesses

  • 13 Citations

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1880)

Abstract

The best known constructions for arrays with low bias are those from [1] and the exponential sum method based on the Weil-Carlitz-Uchiyama bound. They all yield essentially the same parameters. We present new efficient coding-theoretic constructions, which allow far-reaching generalizations and improvements. The classical constructions can be described as making use of Reed-Solomon codes. Our recursive construction yields greatly improved parameters even when applied to Reed-Solomon codes. Use of algebraic-geometric codes leads to even better results, which are optimal in an asymptotic sense. The applications comprise universal hashing, authentication, resilient functions and pseudorandomness.

Key Words

  • Low bias
  • almost independent arrays
  • Reed-Solomon codes
  • Hermitian codes
  • Suzuki codes
  • Fourier transform
  • Weil-Carlitz-Uchiyama bound
  • exponential sum method
  • Zyablov bound
  • hashing
  • authentication
  • resiliency

Download conference paper PDF

References

  1. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables, Random Structures and Algorithms 3 (1992), 289–304, preliminary version: Symposium 31st FOCS 1990, 544–553

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Bierbrauer, J.: Universal hashing and geometric codes, Designs, Codes and Cryptography 11 (1997), 207–221

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Bierbrauer, J.: Authentication via algebraic-geometric codes, in: Recent Progress in Geometry, Supplemento ai Rendiconti del Circolo Matematico di Palermo 51 (1998), 139–152

    MathSciNet  Google Scholar 

  4. Bierbrauer, J., Johansson, T., Kabatiansky, G., Smeets, B.: On families of hash functions via geometric codes and concatenation, Proceedings CRYPTO 93, Lecture Notes in Computer Science 773 (1994), 331–342

    Google Scholar 

  5. Bierbrauer, J., Schellwat, H.: Weakly biased arrays, almost independent arrays and error-correcting codes, submitted for publication in the Proceedings of AMS-DIMACS.

    Google Scholar 

  6. Boyar, J., Brassard, G., Peralta, R.: Subquadratic zero-knowledge, JACM 42 (1995), 1169–1193

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Brassard, G., Cŕepeau, C., Santha, M.: Oblivious transfers and intersecting codes, IEEE Transactions on Information Theory 42 (1996), 1769–1780

    CrossRef  MATH  Google Scholar 

  8. Carlitz, L., Uchiyama, S.: Bounds for exponential sums, Duke Mathematical Journal 24 (1957), 37–41

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Cohen, G. D., Zémor, G.: Intersecting codes and independent families, IEEE Transactions on Information Theory 40 (1994), 1872–1881

    CrossRef  MATH  Google Scholar 

  10. Gal, A.: A characterization of span program size and improved lower bounds for monotone span programs, Proceedings 13th Symposium of the Theory of Computing (1998), 429–437

    Google Scholar 

  11. Carter, J. L., Wegman, M. N.: Universal Classes of Hash Functions, J.Computer and System Sci. 18 (1979), 143–154

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Hansen, J. P., Stichtenoth, H.: Group codes on certain algebraic curves with many rational points, AAECC 1 (1990), 67–77

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Helleseth, T., Johansson, T.: Universal hash functions from exponential sums over finite fields and Galois rings, Lecture Notes in Computer Science 1109 (1996), 31–44 (CRYPTO 96)

    Google Scholar 

  14. Justesen, J.: A class of asymptotically good algebraic codes, IEEE Transactions on Information Theory 18 (1972), 652–656

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Katsman, G. L., Tsfasman, M. A., Vladut, S. G.: Modular curves and codes with a polynomial construction, IEEE Transaction on Information Theory 30 (1984), 353–355

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Kurosawa, K., Johansson, T., Stinson, D.: Almost k-wise independent sample spaces and their cryptologic applications, Lecture Notes in Computer Science 1233 (1997), 409–421 (Advances in Cryptology, Eurocrypt 97)

    Google Scholar 

  17. Lu, C. J.: Improved pseudorandom generators for combinatorial rectangles, Proceedings of the 25♪th International Colloquium on Automata, Languages and Programming (1998), 223–234

    Google Scholar 

  18. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications, SIAM Journal on Computing 22 (1993), 838–856, preliminary version: Proceedings STOC 1990, 213–223

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Naor, M., Reingold, O.: On the construction of pseudo-random permutations: Luby-Rackoff revisited, Proceedings STOC 29 (1997), 189–199

    Google Scholar 

  20. Ozarow, L. H., Wyner, A. D.: Wire-Tap Channel II, AT&T Bell Laboratories Technical Journal 63 (1984), 2135–2157

    MATH  Google Scholar 

  21. Shen, B. Z.: A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate, IEEE Transactions on Information Theory 39 (1993), 239–242

    CrossRef  MATH  Google Scholar 

  22. Simmons, G. J.: A game theory model of digital message authentication, Congressus Numerantium 34 (1992), 413–424

    Google Scholar 

  23. Simmons, G. J.: Authentication theory/coding theory, in: Advances in Cryptology, Proceedings of Crypto 84, Lecture Notes in Computer Science 196 (1985), 411–431

    Google Scholar 

  24. Stichtenoth, H.: Algebraic function fields and codes, Springer 1993.

    Google Scholar 

  25. Wegman, M. N., Carter, J. L.: New Hash Functions and Their Use in Authentication and Set Equality, J.Computer and System Sci. 22 (1981), 265–279

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Wei, V. K.: Generalized Hamming weights for linear codes, IEEE Transactions on Information Theory 37 (1991), 1412–1418

    CrossRef  MATH  Google Scholar 

  27. Zyablov, V. V.: An estimate of the complexity of constructing binary linear cascade codes, Problems in Information transmission 7 (1971), 3–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA

    Jürgen Bierbrauer

  2. Department of Natural Sciences, Örebro University, SE-70182, Örebro, Sweden

    Holger Schellwat

Authors
  1. Jürgen Bierbrauer
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Holger Schellwat
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science and Engineering, University of California, 0114 9500 Gilman Drive, La Jolla, CA, 92093, USA

    Mihir Bellare

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bierbrauer, J., Schellwat, H. (2000). Almost Independent and Weakly Biased Arrays: Efficient Constructions and Cryptologic Applications. In: Bellare, M. (eds) Advances in Cryptology — CRYPTO 2000. CRYPTO 2000. Lecture Notes in Computer Science, vol 1880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44598-6_33

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/3-540-44598-6_33

  • Published: 11 August 2000

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67907-3

  • Online ISBN: 978-3-540-44598-2

  • eBook Packages: Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

65.108.231.39

Not affiliated

Springer Nature

© 2023 Springer Nature