Abstract
The best known constructions for arrays with low bias are those from [1] and the exponential sum method based on the Weil-Carlitz-Uchiyama bound. They all yield essentially the same parameters. We present new efficient coding-theoretic constructions, which allow far-reaching generalizations and improvements. The classical constructions can be described as making use of Reed-Solomon codes. Our recursive construction yields greatly improved parameters even when applied to Reed-Solomon codes. Use of algebraic-geometric codes leads to even better results, which are optimal in an asymptotic sense. The applications comprise universal hashing, authentication, resilient functions and pseudorandomness.
Key Words
- Low bias
- almost independent arrays
- Reed-Solomon codes
- Hermitian codes
- Suzuki codes
- Fourier transform
- Weil-Carlitz-Uchiyama bound
- exponential sum method
- Zyablov bound
- hashing
- authentication
- resiliency
Download conference paper PDF
References
Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables, Random Structures and Algorithms 3 (1992), 289–304, preliminary version: Symposium 31st FOCS 1990, 544–553
Bierbrauer, J.: Universal hashing and geometric codes, Designs, Codes and Cryptography 11 (1997), 207–221
Bierbrauer, J.: Authentication via algebraic-geometric codes, in: Recent Progress in Geometry, Supplemento ai Rendiconti del Circolo Matematico di Palermo 51 (1998), 139–152
Bierbrauer, J., Johansson, T., Kabatiansky, G., Smeets, B.: On families of hash functions via geometric codes and concatenation, Proceedings CRYPTO 93, Lecture Notes in Computer Science 773 (1994), 331–342
Bierbrauer, J., Schellwat, H.: Weakly biased arrays, almost independent arrays and error-correcting codes, submitted for publication in the Proceedings of AMS-DIMACS.
Boyar, J., Brassard, G., Peralta, R.: Subquadratic zero-knowledge, JACM 42 (1995), 1169–1193
Brassard, G., Cŕepeau, C., Santha, M.: Oblivious transfers and intersecting codes, IEEE Transactions on Information Theory 42 (1996), 1769–1780
Carlitz, L., Uchiyama, S.: Bounds for exponential sums, Duke Mathematical Journal 24 (1957), 37–41
Cohen, G. D., Zémor, G.: Intersecting codes and independent families, IEEE Transactions on Information Theory 40 (1994), 1872–1881
Gal, A.: A characterization of span program size and improved lower bounds for monotone span programs, Proceedings 13th Symposium of the Theory of Computing (1998), 429–437
Carter, J. L., Wegman, M. N.: Universal Classes of Hash Functions, J.Computer and System Sci. 18 (1979), 143–154
Hansen, J. P., Stichtenoth, H.: Group codes on certain algebraic curves with many rational points, AAECC 1 (1990), 67–77
Helleseth, T., Johansson, T.: Universal hash functions from exponential sums over finite fields and Galois rings, Lecture Notes in Computer Science 1109 (1996), 31–44 (CRYPTO 96)
Justesen, J.: A class of asymptotically good algebraic codes, IEEE Transactions on Information Theory 18 (1972), 652–656
Katsman, G. L., Tsfasman, M. A., Vladut, S. G.: Modular curves and codes with a polynomial construction, IEEE Transaction on Information Theory 30 (1984), 353–355
Kurosawa, K., Johansson, T., Stinson, D.: Almost k-wise independent sample spaces and their cryptologic applications, Lecture Notes in Computer Science 1233 (1997), 409–421 (Advances in Cryptology, Eurocrypt 97)
Lu, C. J.: Improved pseudorandom generators for combinatorial rectangles, Proceedings of the 25♪th International Colloquium on Automata, Languages and Programming (1998), 223–234
Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications, SIAM Journal on Computing 22 (1993), 838–856, preliminary version: Proceedings STOC 1990, 213–223
Naor, M., Reingold, O.: On the construction of pseudo-random permutations: Luby-Rackoff revisited, Proceedings STOC 29 (1997), 189–199
Ozarow, L. H., Wyner, A. D.: Wire-Tap Channel II, AT&T Bell Laboratories Technical Journal 63 (1984), 2135–2157
Shen, B. Z.: A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate, IEEE Transactions on Information Theory 39 (1993), 239–242
Simmons, G. J.: A game theory model of digital message authentication, Congressus Numerantium 34 (1992), 413–424
Simmons, G. J.: Authentication theory/coding theory, in: Advances in Cryptology, Proceedings of Crypto 84, Lecture Notes in Computer Science 196 (1985), 411–431
Stichtenoth, H.: Algebraic function fields and codes, Springer 1993.
Wegman, M. N., Carter, J. L.: New Hash Functions and Their Use in Authentication and Set Equality, J.Computer and System Sci. 22 (1981), 265–279
Wei, V. K.: Generalized Hamming weights for linear codes, IEEE Transactions on Information Theory 37 (1991), 1412–1418
Zyablov, V. V.: An estimate of the complexity of constructing binary linear cascade codes, Problems in Information transmission 7 (1971), 3–10
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bierbrauer, J., Schellwat, H. (2000). Almost Independent and Weakly Biased Arrays: Efficient Constructions and Cryptologic Applications. In: Bellare, M. (eds) Advances in Cryptology — CRYPTO 2000. CRYPTO 2000. Lecture Notes in Computer Science, vol 1880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44598-6_33
Download citation
DOI: https://doi.org/10.1007/3-540-44598-6_33
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67907-3
Online ISBN: 978-3-540-44598-2
eBook Packages: Springer Book Archive
