Skip to main content

Recurrent Long-Range Interactions in Early Vision

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

A general principle of cortical architecture is the bidirec- tional flow of information along feedforward and feedback connections. In the feedforward path, converging connections mainly define the fea- ture detection characteristics of cells. The computational role of feedback connections, on the contrary, is largely unknown. Based on empirical find- ings we suggest that top-down feedback projections modulate activity of target cells in a context dependent manner. The context is represented by the spatial extension and direction of long-range connections. In this scheme, bottom-up activity which is consistent in a more global context is enhanced, inconsistent activity is suppressed. We present two instantia- tions of this general scheme having complementary functionality, namely a model of cortico-cortical V1-V2 interactions and a model of recurrent intracortical V1 interactions. The models both have long-range interac- tions for the representation of contour shapes and modulating feedback in common. They differ in their response properties to illusory contours and corners, and in the details of computing the bipole filter which models the long-range connections. We demonstrate that the models are capable of basic processing tasks in vision, such as, e.g., contour enhancement, noise suppression and corner detection. Also, a variety of perceptual phe- such as grouping of fragmented shape outline and interpolation nomena of illusory contours can be explained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Biederman. Human image understanding: Recent research and a theory. CVGIP, 32(1):29–73, 1985.

    Google Scholar 

  2. J. Bolz, C.D. Gilbert, and T. Wiesel. Pharmacological analysis of cortical circuitry. TINS, 12(8):292–296, 1989.

    Google Scholar 

  3. J. Bullier, M.E. McCourt, and G.H. Henry. Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat. Exp. Brain Res., 70:90–98, 1988.

    Google Scholar 

  4. F. Crick and C. Koch. Why is the a hierarchy of visual cortical and thalamic areas: The no-strong loops hypothesis. Nature, 391:245–250, 1998.

    Article  Google Scholar 

  5. A. Das and C. Gilbert. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature, 399:655–661, 1999.

    Article  Google Scholar 

  6. D.J. Field, A. Hayes, and R.F. Hess. Contour integration by the human visual system: Evidence for local “association field”. Vision Res., 33(2):173–193, 1993.

    Article  Google Scholar 

  7. L.H. Finkel and G.M. Edelman. Integration of distributed cortical systems by reentry: A computer simulation of interactive functionally segregated visual areas. J. Neurosci., 9(9):3188–3208, 1989.

    Google Scholar 

  8. L.H. Finkel and P. Sajda. Object discrimination based on depth-from-occlusion. Neural Comput., 4:901–921, 1992.

    Article  Google Scholar 

  9. C. Gilbert. Horizontal integration and cortical dynamics. Neuron, 9:1–13, 1992.

    Article  Google Scholar 

  10. C.D. Gilbert. Circuitry, architecture, and functional dynamics of visual cortex. Cereb. Cortex, 3(5):373–386, Sep/Oct 1993.

    Article  Google Scholar 

  11. C.D. Gilbert and T.N. Wiesel. Clustered intrinsic connections in cat visual cortex. J. Neurosci., 3:1116–1133, 1983.

    Google Scholar 

  12. C.D. Gilbert and T.N. Wiesel. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci., 9(7):2432–2442, 1989.

    Google Scholar 

  13. A. Gove, S. Grossberg, and E. Mingolla. Brightness perception, illusory contours and corticogeniculate feedback. In Proc. World Conference on Neural Networks (WCNN-93), Vol. I-IV, pages (I) 25–28, Portland (Oreg./USA), July 11-15 1993.

    Google Scholar 

  14. S. Grossberg. How does a brain build a cognitive code? Psych. Rev., 87:1–51, 1980.

    Article  Google Scholar 

  15. S. Grossberg and E. Mingolla. Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentation. Percept. Psychophys., 38:141–171, 1985.

    Google Scholar 

  16. S. Grossberg, E. Mingolla, and W.D. Ross. Visual brain and visual perception: how does the cortex do perceptual grouping? TINS, 20(3):106–111, 1997.

    Google Scholar 

  17. T. Hansen and H. Neumann. A model of V1 visual contrast processing utilizing long-range connections and recurrent interactions. In Proc. ICANN, pages 61–66, Edinburgh, UK, Sept. 7-10 1999.

    Google Scholar 

  18. F. Heitger, R. von der Heydt, E. Peterhans, L. Rosenthaler, and O. Kübler. Simulation of neural contour mechanisms: Representing anomalous contours. Image Vis. Comp., 16:407–421, 1998.

    Article  Google Scholar 

  19. J.A. Hirsch and C.D. Gilbert. Synaptic physiology of horizontal connections in the cat’s visual cortex. J. Neurosci., 11(6):1800–1809, June 1991.

    Google Scholar 

  20. J.M. Hupé, A.C. James, B.R. Payne, S.G. Lomber, P. Girard, and J. Bullier. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394:784–787, Aug. 1998.

    Article  Google Scholar 

  21. G. Kanizsa. Percezione attuale, esperienza passata l‘“esperimento impossible”. In G. Kanizsa and G. Vicario, editors, Ricerche sperimentali sulla percezione., pages 9–47. Universitá degli studi, Triente, 1968.

    Google Scholar 

  22. G. Kanizsa. Subjective contours. Sci. Am., 234(4):48–52, 1976.

    Article  Google Scholar 

  23. M.K. Kapadia, M. Ito, C.D. Gilbert, and G. Westheimer. Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron, 15:843–856, Oct. 1995.

    Article  Google Scholar 

  24. J.J. Knierim and D.C. Van Essen. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophys., 67(4):961–980, 1992.

    Google Scholar 

  25. G.W. Lesher and E. Mingolla. The role of edges and line-ends in illusory contour formation. Vision Res., 33(16):2253–2270, 1993.

    Article  Google Scholar 

  26. Z. Li. Pre-attentive segmentation in the primary visual cortex. M.I.T. A.I. Lab., Memo No. 1640, 1998.

    Google Scholar 

  27. M. Livingstone and D. Hubel. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci., 4(1):309–356, 1984.

    Google Scholar 

  28. D. Mumford. On the computational architecture of the neocortex II: The role of cortico-cortical loops. Biol. Cybern., 65:241–251, 1991.

    Article  Google Scholar 

  29. H. Neumann and W. Sepp. Recurrent V1-V2 interaction in early visual boundary processing. Biol. Cybern., 81:425–444, 1999.

    Article  Google Scholar 

  30. E. Peterhans and R. von der Heydt. Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps. J. Neurosci., 9(5):1749–1763, 1989.

    Google Scholar 

  31. E. Peterhans and R. von der Heydt. Subjective contours-bridging the gap between psychophysics and physiology. TINS, 14(3):112–119, 1991.

    Google Scholar 

  32. U. Polat and D. Sagi. The arcitecture of perceptual spatial interactions. Vision Res., 34:73–78, 1994.

    Article  Google Scholar 

  33. K. Prazdny. Illusory contours are not caused by simultaneous brightness contrast. Percept. Psychophys., 34(4):403–404, 1983.

    Google Scholar 

  34. K. Rockland and A. Virga. Terminal arbors of individual “feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris-lencoagglunitin. J. Comp. Neurol., 285:54–72, 1989.

    Article  Google Scholar 

  35. P.-A. Salin and J. Bullier. Corticocortical connections in the visual system: Structure and function. Physiol. Rev., 75(1):107–154, 1995.

    Google Scholar 

  36. J. Sandell and P. Schiller. Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J. Neurophys., 48(1):38–48, 1982.

    Google Scholar 

  37. K. Schmidt, R. Goebel, S. Löwel, and W. Singer. The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Europ. J. Neurosci., 9:1083–1089, 1997.

    Article  Google Scholar 

  38. T.F. Shipley and P.J. Kellman. The role of discontinuities in the perception of subjective figures. Percept. Psychophys., 48(3):259–270, 1990.

    Google Scholar 

  39. T.F. Shipley and P.J. Kellman. Strength of visual interpolation depends on the ratio of physically specified to total edge length. Percept. Psychophys., 52(1):97–106, 1992.

    Google Scholar 

  40. S. Ullman. Sequence of seeking and counter streams: A computational model for bidirectional information flow in the visual cortex. Cereb. Cortex, 2:310–335, 1995.

    Google Scholar 

  41. R. von der Heydt, F. Heitger, and E. Peterhans. Perception of occluding contours: Neural mechanisms and a computational model. Biomed. Res., 14:1–6, 1993.

    Google Scholar 

  42. R. von der Heydt and E. Peterhans. Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. J. Neurosci., 9(5):1731–1748, 1989.

    Google Scholar 

  43. R. von der Heydt, E. Peterhans, and G. Baumgartner. Illusory contours and cortical neuron responses. Science, 224:1260–1262, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hansen, T., Sepp, W., Neumann, H. (2001). Recurrent Long-Range Interactions in Early Vision. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics