Skip to main content

Towards Novel Neuroscience-Inspired Computing

  • Chapter
  • First Online:
Book cover Emergent Neural Computational Architectures Based on Neuroscience

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

Present approaches for computing do not have the perfor- mance, flexibility and reliability of neural information processing sys- tems. In order to overcome this, conventional computing systems could benefit from various characteristics of the brain such as modular organi- zation, robustness, timing and synchronisation, and learning and memory storage in the central nervous system. This overview incorporates some of the key research issues in the field of biologically inspired computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. András. The role of brain chaos. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  2. R. Assadollahi and F. Pulvermüller. Neural network classification of word evoked neuromagnetic brain activity. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  3. J. Austin. ADAM: A distributed associative memory for scene analysis. In Proceedings of First International Conference on Neural Networks, page 287, San Diego, 1987.

    Google Scholar 

  4. J. Austin. Matching performance of binary correlation matrix memories. In R. Sun and F. Alexandre, editors, Connectionist-Symbolic Integration: From Unified to Hybrid Approaches. Lawrence Erlbaum Associates Inc, New Jersey, 1997.

    Google Scholar 

  5. J. Austin and S. O’Keefe. Application of an associative memory to the analysis of document fax images. The British Machine Vision Conference, pages 315–325, 1994.

    Google Scholar 

  6. J. Austin and T. Stonham. An associative memory for use in image recognition and occlusion analysis. Image and Vision Computing, 5(4):251–261, 1987.

    Article  Google Scholar 

  7. H. Bartsch, M. Stetter, and K. Obermayer. On the influence of threshold variability in a mean-field model of the visual cortex. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  8. A. Basso, M. Gardelli, M. Grassi, and M. Mariotti. The role of the right hemisphere in recovery from aphasia: Two case studies. Cortex, 25:555–566, 1989.

    Google Scholar 

  9. J. Binder. Functional magnetic resonance imaging of language cortex. International Journal of Imaging Systems and Technology, 6:280–288, 1995.

    Article  Google Scholar 

  10. R. Bogacz, M. Brown, and C. Giraud-Carrier. A familiarity discrimination algorithm inspired by computations of the perirhinal cortex. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  11. R. Borisyuk, G. Borisyuk, and Y. Kazanovich. Temporal structure of neural activity and modelling of information processing in the brain. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  12. J. Bryson and L. Stein. Modularity and specialized learning: Mapping between agent architectures and brain organization. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  13. G. Bugmann. Role of the cerebellum in time-critical goal-oriented behaviour: Anatomical basis and control principle. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  14. S. Capp, D. Perani, F. Grassi, S. Bressi, M. Alberoni, M. Franceschi, V. Bettinardi, S. Todde, and F. Frazio. A PET follow-up study of recovery after stroke in acute aphasics. Brain and Language, 56:55–67, 1997.

    Article  Google Scholar 

  15. D. Caragea, A. Silvescu, and V. Honavar. Analysis and synthesis of agents that learn from distributed dynamic data sources. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  16. M. Chady. Modelling higher cognitive functions with Hebbian cell assemblies. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  17. D. Chawla, E. Lumer, and K. Friston. The relationship between synchronization among neuronal populations and their mean activity levels. Neural Computation, 11:319–328, 1999.

    Article  Google Scholar 

  18. G. Deco. Biased competition mechanisms for visual attention in a multimodular neurodynamical system. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  19. M. Denham. The dynamics of learning and memory: Lessons from neuroscience. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  20. S. Denham and M. Denham. An investigation into the role of cortical synaptic depression in auditory processing. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  21. S. Dodel, J.M. Herrmann, and T. Geisel. Stimulus-independent data analysis for fMRI. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  22. K. Doya. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7-8):961–974, 1999.

    Article  Google Scholar 

  23. J. Elman. Origins of language: A conspiracy theory. In B. MacWhinney, editor, The Emergence of Language, pages 1–27. Lawrence Earlbaum Associates, Hillsdale, NJ, 1999.

    Google Scholar 

  24. P. Érdi and T. Kiss. The complexity of the brain: Structural, functional and dynamic modules. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  25. M. Forcada and R. Carrasco. Finite-state computation in analog neural networks: Steps towards biologically plausible models? In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  26. A. Friederici. The developmental cognitive neuroscience of language: A new re-search domain. Brain and Language, 71:65–68, 2000.

    Article  Google Scholar 

  27. L. Friedman, J. Kenny, A. Wise, D. Wu, T. Stuve, D. Miller, J. Jesberger, and J. Lewin. Brain activation during silent word generation evaluated with functional MRI. Brain and Language, 64:943–959, 1998.

    Article  Google Scholar 

  28. C. Fulvi Mari. Modular auto-associators: Achieving proper memory retrieval. In S. Wermter, J. Austin, and D. Willshaw, editors, EmerNet: Third International Workshop on Current Computational Architectures Integrating Neural Networks and Neuroscience, pages 15–18. EmerNet, 2000.

    Google Scholar 

  29. M. Gazzaniga, R. Ivry, and G. Mangun. Cognitive Neuroscience: The Biology of the Mind. W.W. Norton & Company Ltd, New York, 1998.

    Google Scholar 

  30. G. Green, W. Woods, and S. Manchanda. Representations of neuronal models using minimal and bilinear realizations. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  31. E. Guigon, P. Gramdguillaume, I. Otto, L. Boutkhil, and Y. Burnod. Neural network models of cortical functions based on the computational properties of the cerebral cortex. Journal of Physiology (Paris), 88:291–308, 1994.

    Article  Google Scholar 

  32. D. Halliday. Temporal coding in neuronal populations in the presence of axonal and dendritic conduction time delays. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  33. T. Hansen and H. Neumann. Neural mechanisms for representing surface and contour features. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  34. T. Hansen, W. Sepp, and H. Neumann. Recurrent long-range interactions in early vision. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  35. S. Hanson, M. Negishi, and C. Hanson. Connectionist neuroimaging. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  36. D. Hebb. The Organization of Behaviour. Wiley, New York, 1949.

    Google Scholar 

  37. J. Henderson. Segmenting state into entities and its implication for learning. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  38. J. Hicks and P. Monaghan. Explorations of the interaction between split processing and stimulus types. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  39. A. Hodgkin and A. Huxley. Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Phyiol., 116:449–472, 1952.

    Google Scholar 

  40. C. Huyuk. Cell assemblies as an intermediate level model of cognition. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  41. J. Kazer and A. Sharkey. The role of memory, anxiety and Hebbian learning in hippocampal function: Novel explorations in computational neuroscience and robotics. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  42. A. Knoblauch and G. Palm. Spiking associative memory and scene segmentation by synchronization of cortical activity. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  43. H. Krabe, A. Thiel, G. Weber-Luxenburger, K. Herholz, and W. Heiss. Brain plasticity in poststroke aphasia: What is the contribution of the right hemisphere? Brain and Language, 64(2):215–230, 1998.

    Article  Google Scholar 

  44. D. Kustrin and J. Austin. Connectionist propositional logic a simple correlation matrix memory based reasoning system. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  45. G. Marcus. Plasticity and nativism: Towards a resolution of an apparent paradox. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  46. G. Martin, N.,E. Safran, and N. Dell. Recovery in deep dysphasia: Evidence for a relation between auditory-verbal STM capacity and lexical error in repetition. Brain and Language, 52:83–113, 1996.

    Article  Google Scholar 

  47. G. Matsumoto, E. Körner, and M. Kawato. Organisation of computation in brain-like systems. Neural Networks, 26–27:v-vi, 1999.

    Google Scholar 

  48. J. McClelland and N. Goddard. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus, 6(6):655–665, 1996.

    Article  Google Scholar 

  49. J. McClelland, B. McNaughton, and R. O’Reilly. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Pyschological Review, 102(3):419–457, 1995.

    Article  Google Scholar 

  50. M. Mimura, M. Kato, M. Kato, Y. Santo, T. Kojima, M. Naeser, and T. Kashima. Prospective and retrospective studies of recovery in aphasia: Changes in cerebral blood flow and language functions. Brain, 121:2083–2094, 1998.

    Article  Google Scholar 

  51. H. Moisl. Linguistic computation with state space trajectories. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  52. G. Mpitsos, R. Burton, H. Creech, and S. Soinilla. Evidence for chaos in spiking trains of neurons that generate rhythmic motor patterns. Brain Research Bulletin, 21:529–538, 1988.

    Article  Google Scholar 

  53. S. O’Keefe and J. Austin. An application of the ADAM associative memory to the analysis of document images. The British Machine Vision Conference, pages 315–325, 1995.

    Google Scholar 

  54. G. Palm, F. Schwenker, F.T. Sommer, and A. Strey. Neural associative memory. In A. Krikelis and C. Weems, editors, Associative Processing and Processors. IEEE Computer Society, Los Alamitos, CA, 1997.

    Google Scholar 

  55. S. Panzeri, E. Rolls, F. Battaglia, and R. Lavis. Simulation studies of the speed of recurrent processing. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  56. T. Pearce, P. Verschure, J. White, and J. Kauer. Robust stimulus encoding in olfactory processing: Hyperacuity and efficient signal transmission. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  57. A. Pérez-Uribe. Using a time-delay actor-critic neural architecture with dopamine-like reinforcement signal for learning in autonomous robots. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  58. J. Reggia, Y. Shkuro, and N. Shevtsova. Computational investigation of hemispheric specialization and interactions. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  59. R. Reilly. Collaborative cell assemblies: Building blocks of cortical computation. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  60. M. Rugg. Introduction. In M. Rugg, editor, Cognitive Neuroscience, pages 1–10. Psychology Press, Hove East Sussex, 1997.

    Google Scholar 

  61. A. Rust, R. Adams, S. George, and H. Bolouri. Towards computational neural systems through developmental evolution. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  62. S. Schultz, H. Golledge, and S. Panzeri. Sychronisation, binding and the role of correlated firing in fast information transmission. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  63. L. Shastri. SMRITI: A computational model of episodic memory formation inspired by the hippocampus system. In S. Wermter, J. Austin, and D. Willshaw, editors, EmerNet: Third International Workshop on Current Computational Architectures Integrating Neural Networks and Neuroscience, pages 7–10. EmerNet, 2000.

    Google Scholar 

  64. L. Shastri. Biological grounding of recruitment learning and vicinal algorithms in long-term potentiation. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  65. S. Song, K. Miller, and L. Abbott. Competitive Hebbian learning through spike-timing dependent synaptic plasticity. Nature Neuroscience, 3:919–926, 2000.

    Article  Google Scholar 

  66. M. Spitzer. The Mind Within the Net: Models of Learning, Thinking and Acting. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  67. D. Sterratt. Locus olfaction synchronous oscillations in excitatory and inhibitory groups of spiking neurons. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  68. J. Taylor. Images of the mind: Brain images and neural networks. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  69. A. Treves and E. Rolls. Computational analysis of the role of the hippocampus inmemory. Hippocampus, 4(3):374–391, 1994.

    Article  Google Scholar 

  70. M. Turner and J. Austin. Matching perfromance of binary correlation matrix memories. Neural Networks, 1997.

    Google Scholar 

  71. E. Warburton, C. Price, K. Swinnburn, and R. Wise. Mechanisms of recovery from aphasia: Evidence from positron emission tomography studies. Journal Neurol Neurosurg Psychiatry, 66:151–161, 1999.

    Google Scholar 

  72. C. Weber and K. Obermayer. Emergence of modularity within one sheet of neurons: A model comparison. In S. Wermter, J. Austin, and D. Willshaw, editors, Emergent Neural Computational Architectures based on Neuroscience (this volume). Springer-Verlag, Heidelberg, Germany, 2001.

    Google Scholar 

  73. C. Weiller, C. Isensee, M. Rijntjes, W. Huber, S. Muller, D. Bier, K. Dutschka, R. Woods, J. Noth, and H. Diener. Recovery from Wernicke’s aphasia: A positron emission tomographic study. Ann Neurol, 37:723–732, 1995.

    Article  Google Scholar 

  74. T. Wennekers and G. Palm. Cell assemblies, associative memory and temporal structure in brain signals. In R. Miller, editor, Time and the Brain: Conceptual Advances in Brain Research, Vol.2. Academic Publisher, 2000.

    Google Scholar 

  75. D. Willshaw. Non-symbolic approaches to artificial intelligence and the mind. Philos. Trans. R. Soc. A, 349:87–102, 1995.

    Article  Google Scholar 

  76. D. Willshaw and J. Buckingham. An assessment of Marr’s theory of the hippocampus as a temporary memory store. Philos. Trans. R. Soc. Lond. [B], 329:205–215, 1990.

    Article  Google Scholar 

  77. D. Willshaw, O. Buneman, and H. Longuet-Higgins. Nonholographic associative memory. Nature, 222:960–962, 1969.

    Article  Google Scholar 

  78. D. Willshaw and P. Dayan. Optimal plasticity from matrix memories: What goes up must come down. Neural Computation, 2:85–93, 1990.

    Article  Google Scholar 

  79. D. Willshaw, J. Hallam, S. Gingell, and S. Lau. Marr’s theory of the neocortex as a self-organising neural network. Neural Computation, 9:911–936, 1997.

    Article  Google Scholar 

  80. D. Willshaw and C. von der Malsburg. How patterned neural connections can be set up by self-organization. Philos. Trans. R. Soc. Lond. [B], 194:431–445, 1976.

    Google Scholar 

  81. J. Wright and K. Ahmad. The connectionist simulation of aphasic naming. Brain and language, 59:367–389, 1997.

    Article  Google Scholar 

  82. P. Zhou, J. Austin, and J. Kennedy. A high performance k-NN classifier using a binary correlation matrix memory. In Advances in Neural Information Processing Systems, Vol. 11. MIT, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wermter, S., Elshaw, M., Austin, J., Willshaw, D. (2001). Towards Novel Neuroscience-Inspired Computing. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics