Skip to main content

A Term-Based Approach to Project Scheduling

  • Conference paper
  • First Online:
Conceptual Structures: Broadening the Base (ICCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2120))

Included in the following conference series:

Abstract

We introduce a new method for representing and solving a general class of non-preemptive resource-constrained project scheduling problems. The new approach is to represent scheduling problems as descriptions (activity terms) in a language called RSV, which allows nested expressions usingpll, seq, and xor. The activity-terms of RSV are similar to concepts in a description logic. The language RSV generalizes previous approaches to scheduling with variants insofar as it permits xor’s not only of atomic activities but also of arbitrary activity terms. A specific semantics that assigns their set of active schedules to activity terms shows correctness of a calculus normalizing activity terms RSV similar to propositional DNF-computation.

Based on RSV, this paper describes a diagram-based algorithm for the RSV-problem which uses a scan-line principle. The scan-line principle is used for determining and resolving the occurring resource conflicts and leads to a nonredundant generation of all active schedules and thus to a computation of the optimal schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Artale and Franconi E. A temporal description logic for reasoning about actions and plans. J. Artificial Intelligence Research, 9:463–506, 1998.

    MATH  MathSciNet  Google Scholar 

  2. A. Artale and Franconi E. Temporal description logics. In Handbook of Time and Reasoning in Artificial Intelligence. MIT Press, 2000. forthcoming.

    Google Scholar 

  3. C. E. Bell and J. Han. A New Heuristic Solution Method in Resource-Constrained Project Scheduling. Naval Research Logistics, 38:315–331, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. E. Bell and K. Park. Solving Resource-Constrained Project Scheduling Problems by A * Search. Naval Research Logistics Quarterly, 37(1):61–84, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  5. Fayez F. Boctor. Some efficient multi-heuristic procedures for resource-constrained project scheduling. European Journal of Operational Research, 49:3–13, 1990.

    Article  Google Scholar 

  6. P. Brucker, S. Knust, and O. Schoo, A. Thiele. A Branch and Bound Algorithm for the Resource-constrained Project Scheduling Problem. European Journal of Operational Research, 107:272–288, 1998.

    Article  MATH  Google Scholar 

  7. E. Demeulemeester and W. Herroelen. A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem. Management Science, 38(12):1803–1818, 1992.

    MATH  Google Scholar 

  8. E. Demeulemeester and W. Herroelen. New Benchmark Results for the Resource-constrained Project Scheduling Problem. Management Science, 43(11):1485–1492, 1997.

    MATH  Google Scholar 

  9. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt:. The complexity of concept languages. Information and Computation, 134(1):1–58, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. E. Elmaghraby. Activity Networks: Project Planning and Control by Network Models. Wiley, New York, 1977.

    MATH  Google Scholar 

  11. E. A. Elsayed and N. Z. Nasr. Heuristics for Resource Constrained Scheduling. International Journal of Production Research, 24(2):299–310, 1986.

    Article  MATH  Google Scholar 

  12. C. A. Holloway, R. T. Nelson, and V. Suraphongschai. Comparison of a Multi-Pass Heuristic Decomposition Procedure with other Resource-Constrained Project Scheduling Procedures. Management Science, 25(9):862–872, 1979.

    Article  Google Scholar 

  13. J. E. Jr. Kelly. The Critical Path Method: Resource Planning and Scheduling, Ch 21 in Industrial Scheduling, Muth, J. F. AND Thompson, G. L. (eds.). Prentice Hall, Englewood Cliffs, NJ, 1963.

    Google Scholar 

  14. M. M. Khattab and F. Choobineh. A New Approach for Project Scheduling with a Limited Resource. International Journal of Production Research, 29(1):185–198, 1991.

    Article  Google Scholar 

  15. Pok-Son Kim. Terminologische Sprachen zur Repräsentation und Lösung von ressourcenbeschränkten Ablaufplanungsproblemen mit Prozeßvarianten. PhD thesis, Fachbereich Wirtschaftswissenschaften, Universität Frankfurt, 2001.

    Google Scholar 

  16. W. König, O. Wendt, and P. Rittgen. Das Wirtschaftsinformatik-Schwerpunktprogramm “verteilte DV-Systeme in der Betriebswirtschaft” der Deutschen Forschungsgemeinschaft-Frankfurt am Main, 1993-21 Bl. Technical Report 13, Institut für Wirtschaftsinformatik, 1993.

    Google Scholar 

  17. I. Kurtulus and E. W. Davis. Multi-Project Scheduling: Categorization of Heuristic Rules Performance. Management Science, 28(2):161–172, 1982.

    MATH  Google Scholar 

  18. A. Mingozzi, V. Maniezzo, and L. Ricciardelli, S. Bianco. An exact Algorithm for Project Scheduling with Resource Constraints based on a New Mathematical Formulation. Management Science, 44(5):714–729, 1998.

    MATH  Google Scholar 

  19. O. Oguz and H. Bala. A Comparative Study of Computational Procedures for the Resource Constrained Project Scheduling Problem. European Journal of Operational Research, 72:406–416, 1994.

    Article  MATH  Google Scholar 

  20. T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen. Wissenschaftsverlag, Mannheim/Wien/Zürich, 1990.

    MATH  Google Scholar 

  21. A. B. Pritsker, L. J. Watters, and P. M. Wolfe. Multiproject scheduling with limited resources: A zero-one programming approach. Management Science, 16(1):93–108, September, 1969.

    Google Scholar 

  22. M. Schmidt-Schauß and G. Smolka. Attributive Concept Descriptions with Unions and Complements. Technical Report SEKI Report SR-88-21, FB Informatik, Universität Kaiserslautern, D-6750, Germany, 1988.

    Google Scholar 

  23. L. Schrage. Solving Resource-Constrained Network Problems by Implicit Enumeration-Nonpreemptive Case. Operations Research, 10:263–278, 1970.

    MathSciNet  Google Scholar 

  24. J. P. Stinson, E. W. Davis, and B. M. Khumawala. Multiple Resource-Constrained Scheduling Using Branch and Bound. AIIE Transactions, 10(3):252–259, 1978.

    Google Scholar 

  25. F. B. Talbot. Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case. Management Science, 28(10):1197–1210, 1982.

    MATH  Google Scholar 

  26. F. B. Talbot and J. H. Patterson. An Efficient Integer Programming Algorithm with Network Cuts for Solving Resource-Constrained Scheduling Problems. Management Science, 24(11):1163–1174, 1978.

    MATH  Google Scholar 

  27. J. D. Wiest. The Scheduling of Large Projects with Limited Resources. PhD thesis, Carnegie Institute of Technology, 1963.

    Google Scholar 

  28. D. Wood. An Isothetic View of Computational Geometry. Technical Report CS-84-01, Department of Computer Science, University of Waterloo, Jan. 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, P.S., Schmidt-Schauß, M. (2001). A Term-Based Approach to Project Scheduling. In: Delugach, H.S., Stumme, G. (eds) Conceptual Structures: Broadening the Base. ICCS 2001. Lecture Notes in Computer Science(), vol 2120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44583-8_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44583-8_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42344-7

  • Online ISBN: 978-3-540-44583-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics