Skip to main content

Estimating a Boolean Perceptron from Its Average Satisfying Assignment: A Bound on the Precision Required

  • Conference paper
  • First Online:
Book cover Computational Learning Theory (COLT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2111))

Included in the following conference series:

Abstract

A boolean perceptron is a linear threshold function over the discrete boolean domain 0, 1 n. That is, it maps any binary vector to 0 or 1 depending on whether the vector’s components satisfy some linear inequality. In 1961, Chow [9] showed that any boolean perceptron is determined by the average or “center of gravity” of its “true” vectors (those that are mapped to 1). Moreover, this average distinguishes the function from any other boolean function, not just other boolean perceptrons. We address an associated statisticalquestion of whether an empirical estimate of this average is likely to provide a good approximation to the perceptron. In this paper we show that an estimate that is accurate to within additive error (ε/n)O(log(1/ε)) determines a boolean perceptron that is accurate to within error ε (the fraction of misclassified vectors). This provides a mildly super-polynomial bound on the sample complexity of learning boolean perceptrons in the “restricted focus of attention” setting. In the process we also find some interesting geometrical properties of the vertices of the unit hypercube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anthony and P.L. Bartlett (1999). Neural Network Learning: Theoretical Foundations, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  2. M. Anthony, G. Brightwell and J. Shawe-Taylor (1995). On Specifying Boolean Functions by Labelled Examples. Discrete Applied Mathematics 61, pp. 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Ben-David and E. Dichterman (1998). Learning with Restricted Focus of Attention, J. of Computer and System Sciences, 56(3), pp. 277–298. (earlier version in COLT’93)

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Ben-David and E. Dichterman (1994). Learnability with restricted focus of attention guarantees noise-tolerance, 5th International Workshop on Algorithmic Learning Theory, pp. 248–259.

    Google Scholar 

  5. A. Birkendorf, E. Dichterman, J. Jackson, N. Klasner and H.U. Simon (1998). On restricted-focus-of-attention learnability of Boolean functions, Machine Learning, 30, 89–123. (earlier version in COLT’96)

    Article  MATH  Google Scholar 

  6. A. Blum, A. Frieze, R. Kannan and S. Vempala (1998). A Polynomial-time Algorithm for Learning Noisy Linear Threshold Functions. Algorithmica 22: pp. 35–52.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth (1989). Learnability and the Vapnik-Chervonenkis Dimension, J.ACM 36, 929–965.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Bruck (1990). Harmonic analysis of polynomial threshold functions. SIAM Journal of Discrete Mathematics, 3(2), 168–177.

    Article  MATH  MathSciNet  Google Scholar 

  9. C.K. Chow (1961). On the characterization of threshold functions. Proc. Symp. on Switching Circuit Theory and Logical Design, 34–38.

    Google Scholar 

  10. E. Dichterman (1998). Learning with Limited Visibility. CDAM Research Reports Series, LSE-CDAM-98-01 44pp.

    Google Scholar 

  11. M.E. Dyer, A.M. Frieze, R. Kannan, A. Kapoor, L. Perkovic and U. Vazirani (1993). A mildly exponential time algorithm for approximating the number of solutions to a multidimensional knapsack problem. Combinatorics, Probability and Computing 2, 271–284.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Eiter, T. Ibaraki and K. Makino (1998). Decision Lists and Related Boolean Functions. Institut Für Informatik JLU Giessen (IFIG) Research Reports 9804.

    Google Scholar 

  13. P.W. Goldberg (1999). Learning Fixed-dimension Linear Thresholds from Fragmented Data. Warwick CSdept. tech. report RR362, Sept. 99, accepted for publication in Information and Computation as of Dec. 2000. A preliminary version is in Procs of the 1999 Conference on ComputationalLearning Theory, pp. 88–99 July 1999.

    Google Scholar 

  14. P. Kaszerman (1963). A geometric test-synthesis procedure for a threshold device. Information and Control 6(4), 381–398.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Littlestone (1988). Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm. Machine Learning 2, pp. 285–318.

    Google Scholar 

  16. R.L. Rivest (1996). Learning Decision Lists. Machine Learning 2 pp. 229–246.

    Google Scholar 

  17. F. Rosenblatt (1962). Principles of Neurodynamics. Spartan Books, New York, 1962.

    MATH  Google Scholar 

  18. R.O. Winder (1969). Threshold Gate Approximations Based on Chow Parameters. IEEE Transactions on Computers 18, pp. 372–5.

    Article  Google Scholar 

  19. R.O. Winder (1971). Chow Parameters in Threshold Logic. Journal of the ACM 18(2), pp. 265–89.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, P.W. (2001). Estimating a Boolean Perceptron from Its Average Satisfying Assignment: A Bound on the Precision Required. In: Helmbold, D., Williamson, B. (eds) Computational Learning Theory. COLT 2001. Lecture Notes in Computer Science(), vol 2111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44581-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44581-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42343-0

  • Online ISBN: 978-3-540-44581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics