Skip to main content

Robust Learning — Rich and Poor

  • Conference paper
  • First Online:
Computational Learning Theory (COLT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2111))

Included in the following conference series:

Abstract

Aclass C of recursive functions is called robustly learnable in the sense I (where I is any success criterion of learning) if not only C itself but even all transformed classes T(C) where T is any general recursive operator, are learnable in the sense I. It was already shown before, see [14,19], that for I = Ex (learning in the limit) robust learning is rich in that there are classes being both not contained in any recursively enumerable class of recursive functions and, nevertheless, robustly learnable. For several criteria I, the present paper makes much more precise where we can hope for robustly learnable classes and where we cannot. This is achieved in two ways. First, for I = Ex, it is shown that only consistently learnable classes can be uniformly robustly learnable. Second, some other learning types I are classified as to whether or not they contain rich robustly learnable classes. Moreover, the first results on separating robust learning from uniformly robust learning are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Angluin and C. Smith. Inductive inference: Theory and methods. Computing Surveys, 15:237–289, 1983.

    Article  MathSciNet  Google Scholar 

  2. M. Anthony and N. Biggs. Computational Learning Theory. Cambridge University Press, 1992.

    Google Scholar 

  3. J. Bārzdiņ š. Inductive inference of automata, functions and programs. In Int. Math. Congress, Vancouver, pages 771–776, 1974.

    Google Scholar 

  4. J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory of Algorithms and Programs, vol. 1, pages 82–88. Latvian State University, 1974. In Russian.

    Google Scholar 

  5. J. Bārzdiņš and R. Freivalds. Prediction and limiting synthesis of recursively enumerable classes of functions. Latvijas Valsts Univ. Zimatm. Raksti, 210: 101–111, 1974.

    Google Scholar 

  6. L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and Control, 28:125–155, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Blum. Amac hine-independent theory of the complexity of recursive functions. Journal of the ACM, 14:322–336, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Case, S. Jain, M. Ott, A. Sharma, and F. Stephan. Robust learning aided by context. Journal of Computer and System Sciences (Special Issue for COLT’98), 60:234–257, 2000.

    MATH  MathSciNet  Google Scholar 

  9. J. Case and C. Smith. Comparison of identification criteria for machine inductive inference. Theoretical Computer Science, 25:193–220, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  10. C.C. Florencio. Consistent identification in the limit of some Penn and Buszkowski’s classes is NP-hard. In Proceedings of the International Conference on Computational Linguistics, 1999.

    Google Scholar 

  11. R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In J. Bārzdiņš and D. Bjorner, editors, Baltic Computer Science, volume 502 of Lecture Notes in Computer Science, pages 77–110. Springer-Verlag, 1991.

    Chapter  Google Scholar 

  12. R. Freivalds, J. Bārzdiņš, and K. Podnieks. Inductive inference of recursive functions: Complexity bounds. In J. Bārzdiņš and D. Bjørner, editors, Baltic Computer Science, volume 502 of Lecture Notes in Computer Science, pages 111–155. Springer-Verlag, 1991.

    Chapter  Google Scholar 

  13. M. Fulk. Saving the phenomenon: Requirements that inductive machines not contradict known data. Information and Computation, 79:193–209, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Fulk. Robust separations in inductive inference. In 31st Annual IEEE Symposium on Foundations of Computer Science, pages 405–410. IEEE Computer Society Press, 1990.

    Google Scholar 

  15. E.M. Gold. Language identification in the limit. Information and Control, 10: 447–474, 1967.

    Article  MATH  Google Scholar 

  16. J. Grabowski. Starke Erkennung. In R. Lindner and H. Thiele, editors, Strukturerkennung diskreter kybernetischer Systeme, Teil I, pages 168–184. Seminarbericht Nr.82, Department of Mathematics, Humboldt University of Berlin, 1986. In German.

    Google Scholar 

  17. S. Jain. Robust behaviorally correct learning. Information and Computation, 153(2):238–248, September 1999.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An Introduction to Learning Theory. MIT Press, Cambridge, Mass., second edition, 1999.

    Google Scholar 

  19. S. Jain, C. Smith, and R. Wiehagen. On the power of learning robustly. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 187–197. ACM Press, 1998.

    Google Scholar 

  20. K.P. Jantke and H.-R. Beick. Combining postulates of naturalness in inductive inference. Journal of Information Processing and Cybernetics (EIK), 17:465–484, 1981.

    MATH  MathSciNet  Google Scholar 

  21. R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR mathematicians-A survey. Information Sciences, 22:149–169, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Kurtz and C. Smith. On the role of search for learning. In R. Rivest, D. Haussler, and M. Warmuth, editors, Proceedings of the Second Annual Workshop on Computational Learning Theory, pages 303–311. Morgan Kaufmann, 1989.

    Google Scholar 

  23. S. Kurtz and C. Smith. A refutation of Bārzdiņš’ conjecture. In K.P. Jantke, editor, Analogical and Inductive Inference, Proceedings of the Second International Workshop (AII’ 89), volume 397 of Lecture Notes in Artificial Intelligence, pages 171–176. Springer-Verlag, 1989.

    Google Scholar 

  24. S. Lange. Consistent polynomial-time inference of k-variable pattern languages. In J. Dix, K.P. Jantke, and P. Schmitt, editors, Nonmonotonic and Inductive Logic, 1st International Workshop, Karlsruhe, Germany, volume 543_of Lecture Notes in Computer Science, pages 178–183. Springer-Verlag, 1990.

    Google Scholar 

  25. E. Minicozzi. Some natural properties of strong identification in inductive inference. Theoretical Computer Science, 2:345–360, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Mitchell. Machine Learning. McGraw Hill, 1997.

    Google Scholar 

  27. D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

    Google Scholar 

  28. M. Ott and F. Stephan. Avoiding coding tricks by hyperrobust learning. In P. Vitányi, editor, Fourth European Conference on Computational Learning Theory, volume 1572 of Lecture Notes in Artificial Intelligence, pages 183–197. Springer-Verlag, 1999.

    Google Scholar 

  29. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

    Google Scholar 

  30. W. Stein. Consistent polynomial identification in the limit. In M.M. Richter, C.H. Smith, R. Wiehagen, and T. Zeugmann, editors, Algorithmic Learning Theory: Ninth International Conference (ALT’ 98), volume 1501 of Lecture Notes in Artificial Intelligence, pages 424–438. Springer-Verlag, 1998.

    Google Scholar 

  31. V.N. Vapnik. The Nature of Statistical Learning Theory. Second Edition. Springer-Verlag, 2000.

    Google Scholar 

  32. R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Journal of Information Processing and Cybernetics (EIK), 12:93–99, 1976.

    MATH  MathSciNet  Google Scholar 

  33. R. Wiehagen. Zur Theorie der Algorithmischen Erkennung. Dissertation B, Humboldt University of Berlin, 1978.

    Google Scholar 

  34. R. Wiehagen and W. Liepe. Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen. Journal of Information Processing and Cybernetics (EIK), 12:421–438, 1976.

    MATH  MathSciNet  Google Scholar 

  35. R. Wiehagen and T. Zeugmann. Ignoring data may be the only way to learn efficiently. Journal of Experimental and Theoretical Artificial Intelligence, 6:131–144, 1994.

    Article  MATH  Google Scholar 

  36. R. Wiehagen and T. Zeugmann. Learning and consistency. In K.P. Jantke and S. Lange, editors, Algorithmic Learning for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial Intelligence, pages 1–24. Springer-Verlag, 1995.

    Google Scholar 

  37. T. Zeugmann. On Bārzdiņš’ conjecture. In K.P. Jantke, editor, Analogical and Inductive Inference, Proceedings of the International Workshop, volume 265 of Lecture Notes in Computer Science, pages 220–227. Springer-Verlag, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Case, J., Jain, S., Stephan, F., Wiehagen, R. (2001). Robust Learning — Rich and Poor. In: Helmbold, D., Williamson, B. (eds) Computational Learning Theory. COLT 2001. Lecture Notes in Computer Science(), vol 2111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44581-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44581-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42343-0

  • Online ISBN: 978-3-540-44581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics