Fast Layout Methods for Timetable Graphs

  • Ulrik Brandes
  • Galina Shubina
  • Roberto Tamassia
  • Dorothea Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1984)


Timetable graphs are used to analyze transportation networks. In their visualization, vertex coordinates are fixed to preserve the underlying geography, but due to small angles and overlaps, not all edges should be represented by geodesics (straight lines or great circles).

A previously introduced algorithm represents a subset of the edges by Bézier curves, and places control points of these curves using a force- directed approach [5]. While the results are of very good quality, the running times make the approach impractical for interactive systems. In this paper, we present a fast layout algorithm using an entirely different approach to edge routing, based on directions of control segments rather than positions of control points. We reveal an interesting theoretical connection with Tutte’s barycentric layout method [18], and our computational studies show that this new approach yields satisfactory layouts even for huge timetable graphs within seconds.


Angular Resolution Angular Error Control Segment Minimal Edge Balance Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Abello and E. R. Gansner. Short and smooth polygonal paths. Proc. LATIN’ 98, Springer LNCS 1380, pp. 151–162, 1998.Google Scholar
  2. 2.
    R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network data. IEEE Transactions on Visualization and Graphics, 1(1):16–28, 1995.CrossRefGoogle Scholar
  3. 3.
    P. Bézier. Numerical Control. John Wiley & Sons, 1972.Google Scholar
  4. 4.
    U. Brandes, G. Shubina, and R. Tamassia. Improving angular resolution in visualizations of geographic networks. Data Visualization 2000. Proc. VisSym’ 00, pp. 23–32. Springer, 2000.Google Scholar
  5. 5.
    U. Brandes and D. Wagner. Using graph layout to visualize train interconnection data. Journal of Graph Algorithms and Applications, 2000. To appear.Google Scholar
  6. 6.
    R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte. The dissection of rectangles into squares. Duke Mathematical Journal, 7:312–340, 1940.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Drawing planar graphs with circular arcs. Proc. GD’ 99, Springer LNCS 1731, pp. 117–126, 1999.Google Scholar
  8. 8.
    H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. P. Dobkin, E. R. Gansner, E. Koutsofios, and S. C. North. Implementing a general-purpose edge router. Proc. GD’ 97, Springer LNCS 1353, pp. 262–271, 1997.Google Scholar
  10. 10.
    E. R. Gansner and S. C. North. Improved force-directed layouts. Proc. GD’ 98, Springer LNCS 1547, pp. 364–373, 1998.Google Scholar
  11. 11.
    E. R. Gansner, S. C. North, and K.-P. Vo. DAG-A program that draws directed graphs. Software-Practice and Experience, 17(1):1047–1062, 1988.CrossRefGoogle Scholar
  12. 12.
    M. T. Goodrich and C. G. Wagner. A framework for drawing planar graphs with curves and polylines. Proc. GD’ 98, Springer LNCS 1547, pp. 153–166, 1998.Google Scholar
  13. 13.
    C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular resolution. Proc. GD’ 98, Springer LNCS 1547, pp. 167–182, 1998.Google Scholar
  14. 14.
    A. Liebers, D. Wagner, and K. Weihe. On the hardness of recognizing bundels in time table graphs. Proc. WG’ 99, Springer LNCS 1665, pp. 325–337, 1999.Google Scholar
  15. 15.
    K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, 1999.Google Scholar
  16. 16.
    T. Munzner, E. Hoffman, K. Claffy, and B. Fenner. Visualizing the global topology of the MBone. Proc. IEEE InfoVis’ 96, pp. 85–92, 1996.Google Scholar
  17. 17.
    F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. Proc. WAE’ 99, Springer LNCS 1668, pp. 110–123, 1990.Google Scholar
  18. 18.
    W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, Third Series, 13:743–768, 1963.Google Scholar
  19. 19.
    K. Weihe. Covering trains by stations or the power of data reduction. Electronic Proc. ALEX’ 98, pp. 1–8, 1998.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Galina Shubina
    • 2
  • Roberto Tamassia
    • 2
  • Dorothea Wagner
    • 1
  1. 1.Dept. of Computer & Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.Dept. of Computer Science, Center for Geometric ComputingBrown UniversityProvidenceUSA

Personalised recommendations