Skip to main content

Numerical Simulation of Vortex Flows

  • Conference paper
  • First Online:
Vortex Structure and Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 555))

  • 712 Accesses

Abstract

This paper presents a selection of numerical methods among the most currently used to solve the Navier Stokes equation in a vorticity formulation. The paper focuses on the connection that exists between vorticity boundary condition and the divergence free condition. The different methods has been cast in two classes : the methods which are based on divergence free approximations of the vorticity fields, and those which use a correction procedure in order to satisfy this constraint. For both classes, the respective advantages of Eulerian grid methods and lagrangian methods are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Achdou, J. L. Guermond: SIAM J. Numer. Anal., 37 3, L799 (2000)

    Article  MathSciNet  Google Scholar 

  2. G.K. Batchelor, Introduction to Fluid Dynamics, (Cambridge University Press, 1967)

    Google Scholar 

  3. J. T. Beale, A. Majda: Maths of Comp., 39, 1 (1982)

    Google Scholar 

  4. S.M Belotserkovskii, ‘Calculation of the flow about wings of arbitrary plan form at a wide range of angles of attack’, RAE library Translation, Mekhanika Zhidkosti I Gaza, 4, 32, 1963.

    Google Scholar 

  5. F. Bertagnolio, O. Daube: J. Comp. Phys., 138, L121 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  6. F. Bertagnolio, O. Daube: Intern. J. Numer. Meth. Fluids, 28, L917 (1998)

    Article  ADS  Google Scholar 

  7. A.J. Chorin: Math. of Comp. 22, L745 (1968)

    Article  MathSciNet  Google Scholar 

  8. A.J. Chorin: J. Comp. Phys., 91, L1 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.P. Choquin, G.H. Cottet: C. R. Acad. Sci. 306, Série 1, L739 (1990)

    MathSciNet  Google Scholar 

  10. J.P. Choquin, S. Huberson: Computers and Fluids, 17, L397 (1989)

    Article  ADS  Google Scholar 

  11. G.H. Cottet, S. Mas-Gallic: Numer. Math., 57, L805 (1990)

    Article  MathSciNet  Google Scholar 

  12. G.H. Cottet: Ann. Inst. H. Poincaré, 5, L227 (1988)

    MathSciNet  Google Scholar 

  13. B. Couet, O. Buneman, A. Leonard: J. Comp. Phys., 39, L305 (1981)

    Article  ADS  Google Scholar 

  14. O. Daube, J.L. Guermon, A. Sellier, C. R. Acad. Sci. 313, Série II, L377 (1991)

    ADS  Google Scholar 

  15. O. Daube, J. Comp. Phys., 138, L121 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.C.R. Denis, D.B. Ingham, R.N Cook: J. Comp. Phys., 33, L325 (1979)

    Article  ADS  Google Scholar 

  17. S.C.R. Denis, L. Quartapelle: Int. J. Num. Meth. Fluids, 9, L871 (1989)

    Article  Google Scholar 

  18. A. Gharakani, A. Ghoniem: ASME J. Fluid Eng., 120, 2, L319 (1999)

    Article  Google Scholar 

  19. R. Glowinski, O. Pironneau: SIAM Rev., 12, L167 (1979)

    Article  MathSciNet  Google Scholar 

  20. J.P. Guiraud, R.K. Zeytounian: J. Fluid Mech., 79, L93 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Hecht, Construction d’une base d’un élément fini P1 non conforme à divergencenulle dans R3, Thèse Université Paris VI (1980)

    Google Scholar 

  22. C. Hirsch: Numerical computation of internal and external flows, (Wiley 1990)

    Google Scholar 

  23. O. Knio, A. Ghoniem: J. Comp. Phys., 86, L75 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Leonard: Lecture Notes in Physics, 35, L245 (1974)

    Article  ADS  Google Scholar 

  25. A. Leonard: J. Comp. Phys., 37, L289 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Margerit: Mouvement dynamique des filaments et des anneaux tourbillons defaible épaisseur, Thèse de l’Institut Polytechnique de Loraine (1997)

    Google Scholar 

  27. V. Nastasie, Etude numérique du tourbillon d’extrémité de pale du rotor d’hélicoptère en régime compressible, Thèse Paris VI, (1998)

    Google Scholar 

  28. P. Orlandi: Comput. and Fluids, 15, L137 (1987)

    Article  ADS  Google Scholar 

  29. R. Peyret, T. Taylor: Computational methods for fluid flows, (Springer Verlag New York 1983)

    Google Scholar 

  30. L. Quartapelle: ‘Factorized Formulations of the Incompressible Navier—Stokes equations’ in Int. Conf. on Computational Methods in Flow Analysis at Okayama, Japan, 5-8 september, 1988, ed. by H. Niki and M. Kawahara (Okayama University of Sciences) pp 337–348

    Google Scholar 

  31. L. Quartapelle, Numerical Solutions of the Incompressible Navier—Stokes Equations, (Birkhäuser Verlag, Basel 1993)

    Google Scholar 

  32. C. Rehbach, ‘A numerical calculation of three dimensional unsteady flows with vortex sheets’, in: AIAA 16 th Aerospace Sciences meeting, Huntsville, USA, 1978

    Google Scholar 

  33. L. Rosenhead: Proc Roy. Soc. London, Serie A, 127, L170 (1931)

    Google Scholar 

  34. J. Steinhof, R. Ramachandranm: AIAA J., 28, 3, L426 (1990)

    Article  ADS  Google Scholar 

  35. D. Summers, A. Chorin: Vortex Flows and Related Numerical Methods II, Esaim Proc. Vol 1, http://www.emath.fr/Maths/Vol.1/summers.html

  36. D. Virk, M. Mellander, F. Hussain: J. Fluid Mech. 260, L23 (1994)

    Article  ADS  Google Scholar 

  37. G. Winkelmans, A. Leonard: J. Comp. Phys., 109, 2, L247 (1993)

    Article  ADS  Google Scholar 

  38. Westwater, Rolling up of the surface of discontinuity behind an airfoil of finite span, Aeronautical research commitee report and memoranda # 1962, 1935.

    Google Scholar 

  39. J.C. Wu, J.F. Thomson, Comput. Fluids, 1, L197 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huberson, S., Daube, O. (2000). Numerical Simulation of Vortex Flows. In: Maurel, A., Petitjeans, P. (eds) Vortex Structure and Dynamics. Lecture Notes in Physics, vol 555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44535-8_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44535-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67920-2

  • Online ISBN: 978-3-540-44535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics