Adaptive Image Filtering and Segmentation Using Robust Estimation of Intensity

  • Roman M. Palenichka
  • Peter Zinterhof
  • Iryna B. Ivasenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1876)


A structure-adaptive approach to robust statistical estimation of image intensity for adaptive filtering and segmentation of images is described in the context of a two-region structural image model. The proposed adaptive estimation procedure is based on the selection of best fitting structuring region relatively to a current point from all available multiple structuring regions by the maximum a posteriori probability principle. In application to image filtering, the described method allows to suppress noise and, at the same time, not damage the initial image including corner edges and image fine details. It provides also a robust binary segmentation of local objects of interest and their edges on noisy background.


Robust Estimation Impulsive Noise Polynomial Regression Model Binary Segmentation Robust Parameter Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. S. Huang. Two-Dimensional Digital Signal Processing II: Transforms and Median Filters. Springer-Verlag, Berlin Heidelberg New York, 1981.CrossRefGoogle Scholar
  2. 2.
    V. Koivunen. “A robust nonlinear filter for image restoration”, IEEE Trans., Vol. IP-4, (1995), 569–578.Google Scholar
  3. 3.
    G. Danuser and M. Strieker. “Parametric model fitting: from inlier characterization to outlier detection”, IEEE Trans., Vol. PAMI-20, No. 2, (1998) 263–280.Google Scholar
  4. 4.
    R. M. Palenichka and P. Zinterhof. “Fast structure-adaptive evaluation of local features in images”. Pattern Recognition, Vol. 29, No. 91996) 1495–1505.CrossRefGoogle Scholar
  5. 5.
    C. V. Stewart. “MINPRAN: a new robust estimator for computer vision”, IEEE Trans. Vol. PAMI-17, No. 10, 1995) 925–938.Google Scholar
  6. 6.
    P. Meer et al. “Robust regression methods for computer vision: a review”, Int. J. Computer Vision, Vol. 6, No. 1, 1991) 59–70.CrossRefGoogle Scholar
  7. 7.
    P. J. Huber. Robust Statistics, John Wiley & Son, New York, 1981.zbMATHGoogle Scholar
  8. 8.
    P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection, John Wiley & Son, New York, 1987.zbMATHGoogle Scholar
  9. 9.
    P. M. Djuric. “Asymptotic MAP criteria for model selection”, IEEE Trans., Vol. SP-46, No. 10, (1998) 2726–2735.Google Scholar
  10. 10.
    R. M. Palenichka and I. B. Ivasenko. “Fast and robust parameter estimation in the polynomial regression model of images”, SPIE Proc, Nonlinear Image Processing X, Vol. 3646, (1999) 28–37.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Roman M. Palenichka
    • 1
  • Peter Zinterhof
    • 1
  • Iryna B. Ivasenko
    • 2
  1. 1.Salzburg UniversitySalzburgAustria
  2. 2.Inst. of Physics and MechanicsNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations