A Fast Approximately k—Nearest—Neighbour Search Algorithm For Clasification Tasks

  • Francisco Moreno-Seco
  • Luisa Micó
  • José Oncina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1876)


The k-nearest-neighbour (k-NN) search algorithm is widely used in pattern classification tasks. A large set of fast k-NN search algorithms have been developed in order to obtain lower error rates. Most of them are extensions of fast NN search algorithms where the condition of finding exactly the k nearest neighbours is imposed. All these algorithms calculate a number of distances that increases with k. Also, a vector-space representation is usually needed in these algorithms. If the condition of finding exactly the k nearest neighbours is relaxed, further reductions on the number of distance computations can be obtained. In this work we propose a modification of the LAESA (Linear Approximating and Eliminating Search Algorithm, a fast NN search algorithm for metric spaces) in order to use a certain neighbourhood for lowering error rates and reduce the number of distance computations at the same time.


Nearest Neighbour Metric Spaces Pattern Recognition 


  1. 1.
    Aibar, P., Juan, A., Vidal, E.: Extensions to the approximating and eliminating search algorithm (AESA) for finding k-nearest-neighbours. New Advances and Trends in Speech Recognition and Coding (1993) 23–28Google Scholar
  2. 2.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley (1973)Google Scholar
  3. 3.
    Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall (1988)Google Scholar
  4. 4.
    Micó, L., Oncina, J., Carrasco, R.C.: A fast branch and bound nearest neighbour classifier in metric spaces. Pattern Recognition Letters (1996) 17 731–739CrossRefGoogle Scholar
  5. 5.
    Micó, L., Oncina, J., Vidal, E.: A new version of the nearest neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing-time and memory requirements. Pattern Recognition Letters (1994) 15 9–17CrossRefGoogle Scholar
  6. 6.
    Moreno-Seco, F., Oncina, J., Micó, L.: Improving the LAESA algorithm error rates. In: Proceedings of the VIII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, Bilbao (1999) 413–419Google Scholar
  7. 7.
    Vidal, E.: New formulation and improvements of the Nearest-Neighbour Approximating and Eliminating Search Algorithm (AESA). Pattern Recognition Letters (1994) 15 1–7CrossRefGoogle Scholar
  8. 8.
    Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. Journal of the Association for Computing Machinery (1974) 21(1) 168–173zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Francisco Moreno-Seco
    • 1
  • Luisa Micó
    • 1
  • José Oncina
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversidad de AlicanteAlicanteSpain

Personalised recommendations