Rotated, Scaled, and Noisy 2D and 3D Texture Classification with the Bispectrum-Based Invariant Feature

  • Yo Horikawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1876)

Abstract

The author presents a novel feature of 2D and 3D images invariant to similarity transformations and robust to noise on the basis of the bispectrum. The invariant feature is applied to the classification of texture images suffering from rotation, scaling and noise. Computer experiment shows that about 90 % correct classification ratio is obtained for 5 kinds of 2D natural textures and of 3D brain images rotated in arbitrary degree, scaled up to double and with the white Gaussian noise of 0 dB SNR. The feature can also be used to the estimation of the rotation angles of texture images.

Keywords

Texture Image Texture Classification Invariant Feature Noisy Image Gaussian Markov Random Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tan, T.N.: Geometric transform invariant texture analysis. Proc. SPIE 2488 (1995) 475–485CrossRefGoogle Scholar
  2. 2.
    Kashyap, R.L. and Khotanzaed, A.: A model-based method for rotation-invariant texture classification. IEEE Trans. PAMI. 8 (1986) 472–481Google Scholar
  3. 3.
    Cohen, F.S. et al.: Classification of rotated and scaled texture images using Gaussian Markov random field models. IEEE Trans. PAMI. 13 (1991) 192–202Google Scholar
  4. 4.
    Leung, M.M and Peterson, A. M.: Scale and rotation invariant texture classification. Proc. 26th Asilomar Conf. Signals, Systems and Computers 1 (1992) 461–465Google Scholar
  5. 5.
    You, J. and Cohen, H. A.: Classification and segmentation of rotated and scaled texture images using tuned masks. Pattern Recognition 26 (1993) 245–258CrossRefGoogle Scholar
  6. 6.
    Chen, J.-L. and Kundu, A.: Rotational and gray-scale transform invariant texture identification using wavelet decomposition and hidden Markov models. IEEE Trans. PAMI 16 (1994) 208–214Google Scholar
  7. 7.
    Greenspan, H. et al.: Rotation invariant texture recognition using a steerable pyramid. Proc. ICPR’94 (1994) 162–167Google Scholar
  8. 8.
    Tan, T.N.: Noise robust and rotation invariant texture classification. Proc. 12th European Signal Processing Conf. (1994) 1377–1380Google Scholar
  9. 9.
    Haley, G.M. and Manjunath, B. S.: Rotation invariant texture classification using modified Gabor filters. Proc. IEEE ICIP’95 (1995) 262–265Google Scholar
  10. 10.
    Wu, Y. and Yoshida, Y.: An efficient method for rotation and scaling invariant texture classification. Proc. ICASSP’95 4 (1995) 2519–2522Google Scholar
  11. 11.
    Wu, W.-R. and Wei, S.-C.: Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model. IEEE Trans. Image Proc. 5 (1996) 1423–1434CrossRefGoogle Scholar
  12. 12.
    Fountain, S.R. and Tan, T. N.: Extraction of noise robust and rotation invariant texture features via multichannel filtering. Proc. IEEE ICIP’97 3 (1997) 197–200Google Scholar
  13. 13.
    Fountain, S.R. and Tan, T. N.: Efficient rotation invariant texture features for contentbased image retrieval. Pattern Recognition 31 (1998) 1725–1732CrossRefGoogle Scholar
  14. 14.
    Manian, V. and Vasquez, R.: Scaled and rotated texture classification using a class of basis functions. Pattern Recognition 31 (1998) 1937–1948CrossRefGoogle Scholar
  15. 15.
    Tan, T.N.: Rotation invariant texture features and their use in automatic script identification. IEEE Trans. PAMI 20 (1998) 751–756Google Scholar
  16. 16.
    Lohmann, A.W. and Wirnitzer, B.: Triple correlations. Proc. IEEE 72 (1984) 889–901CrossRefGoogle Scholar
  17. 17.
    Nikias, C.L. and M.R. Raghuveer, M. R.: Bispectrum estimation: a digital signal processing framework. Proc. IEEE 75 (1987) 869–891.CrossRefGoogle Scholar
  18. 18.
    Tsatsanis, M.K. and Giannakis, G. B.: Object and texture classification using higher order statistics. IEEE Trans. PAMI. 14 (1992) 733–750Google Scholar
  19. 19.
    Murino, V. et al.: Noisy texture classification: a higher-order statistics approach. Pattern Recognition 31 (1998) 383–393CrossRefGoogle Scholar
  20. 20.
    Hall, T.E. and Giannakis, G. B.: Bispectral analysis and model validation of texture images. IEEE Trans. Image Proc. 4 (1995) 996–1009CrossRefGoogle Scholar
  21. 21.
    Brodatz, P.: Textures: A Photographic Album for Artists & Designers. Dover, New York, (1966)Google Scholar
  22. 22.
    BrainWeb: Simulated Brain Database, http://www.bic.mni.mcgill.ca/brainweb/

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Yo Horikawa
    • 1
  1. 1.Faculty of EngineeringKagawa UniversityTakamatsuJapan

Personalised recommendations