Advertisement

Non-linear Invertible Representation for Joint Statistical and Perceptual Feature Decorrelation

  • J. Malo
  • R. Navarro
  • I. Epifanio
  • F. Ferri
  • J. M. Artigas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1876)

Abstract

The aim of many image mappings is representing the signal in a basis of decorrelated features. Two fundamental aspects must be taken into account in the basis selection problem: data distribution and the qualitative meaning of the underlying space. The classical PCA techniques reduce the statistical correlation using the data distribution. However, in applications where human vision has to be taken into account, there are perceptual factors that make the feature space uneven, and additional interaction among the dimensions may arise.

In this work a common framework is presented to analyse the perceptual and statistical interactions among the coefficients of any representation. Using a recent non-linear perception model a set of input-dependent features is obtained which simultaneously remove the statistical and perceptual correlations between coefficients. A fast method to invert this representation is also presented, so no input-dependent transform has to be stored. The decorrelating power of the proposed representation suggests that it is a promising alternative to the linear transforms used in image coding, fusion or retrieval applications1.

Keywords

Human Visual System Joint Statistical Perceptual Feature Perceptual Interaction Image Analysis Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Fukunaga. Introd. to Statistical Pattern Recognition. Acad. Press, MA, 1990.Google Scholar
  2. 2.
    R.J. Clarke. Transform Coding of Images. Academic Press, NY, 1985.Google Scholar
  3. 3.
    J.G. Daugman. Entropy reduction and decorrelation in visual coding by oriented neural receptive fields. IEEE Tran. Biomed. Eng., 36:107–114, 1989.CrossRefGoogle Scholar
  4. 4.
    B.A. Olshausen and D. Field. Emergence of simple-cell receptive field properties by a learning a sparse code for natural images. Nature, 381:607–609, 1996.CrossRefGoogle Scholar
  5. 5.
    A.J. Bell and T.J. Sejnowski. The independent components of natural scenes are edge filters. Vision Res., 37(23):3327–3338, 1997.CrossRefGoogle Scholar
  6. 6.
    E.P. Simoncelli and O. Schwartz. Modeling surround suppression in V1 neurons with a statistically-derived normalization model. In M.S. Kearns, editor, Adv. in Neural Inf. Proc. Syst., volume 11. MIT Press, 1999.Google Scholar
  7. 7.
    J.A. Solomon, A.B. Watson, and A. Ahumada. Visibility of DCT basis functions: Effects of contrast masking. IEEE Proc. Data Compress. Conf, (1):361–370, 1994.CrossRefGoogle Scholar
  8. 8.
    P.C. Teo and D.J. Heeger. Perceptual image distortion. Proc. of the First IEEE Intl. Conf. Im. Proc., 2:982–986, 1994.Google Scholar
  9. 9.
    A.B. Watson and J.A. Solomon. A model of visual contrast gain control and pattern masking. JOS A A, 14:2379–2391, 1997.Google Scholar
  10. 10.
    I. Epifanio and J. Malo. Linear transform for simultaneous diaginalization of covariance and perceptual metric in image coding. Technical Report 3, Grup de Visió. Dpt. d’Informàtica, Universitat de València, 2000.Google Scholar
  11. 11.
    B. Dubrovin and S. Novikov. Modern Geometry. Springer Verlag, NY, 1982.Google Scholar
  12. 12.
    G. Legge and J. Foley. Contrast masking in human vision. JOSA, 70:1458–71, 1980.Google Scholar
  13. 13.
    B.A. Wandell. Foundations of Vision. Sinauer Assoc. Publish., MA, 1995.Google Scholar
  14. 14.
    A.M. Tekalp. Digital Video Processing. Prentice Hall, NJ, 1995.Google Scholar
  15. 15.
    R. Buccigrossi and E. Simoncelli. Image compression via joint statistical characterization in the wavelet domain. IEEE Trans. Im. Proc., 8(12):1688–1701, 1999.CrossRefGoogle Scholar
  16. 16.
    D.J. Logan. Non-linear partial differential equations. Wiley&Sons, NY, 1994.Google Scholar
  17. 17.
    J. Malo, F. Ferri, R. Navarro, and R. Valerio. Perceptually and statistically decor-related features for image representation: Application to transform coding. Proc. XV Intl. Conf. Patt. Recog., 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. Malo
    • 1
  • R. Navarro
    • 3
  • I. Epifanio
    • 2
  • F. Ferri
    • 2
  • J. M. Artigas
    • 1
  1. 1.Dpt. d’ÒpticaUniversitat de ValènciaSpain
  2. 2.Dpt. d’InformàticaUniversitat de ValènciaBurjassotSpain
  3. 3.Instituto de Óptica (CSIC)MadridSpain

Personalised recommendations