Alignment and Correspondence Using Singular Value Decomposition

  • B. Luo
  • E. R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1876)


This paper casts the problem of point-set alignment and correspondence into a unified framework. The utility measure underpinning the work is the cross-entropy between probability distributions for alignment and assignment errors. We show how Procrustes alignment parameters and correspondence probabilities can be located using dual singular value decompositions. Experimental results using both synthetic and real images are given.


Delaunay Triangulation Utility Measure Alignment Error Alignment Parameter Proximity Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Amit and A. Kong. Graphical Templates for Model Registration. IEEE PAMI, 18:225–236, 1996.Google Scholar
  2. 2.
    T.F Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active Shape Models-Their Training and Application. CVIU, 61:38–59, 1995.Google Scholar
  3. 3.
    A.D. J. Cross and E.R. Hancock. Graph Matching with a Dual-Step EM Algorithm. IEEE PAMI, 20(11):1236–1253, 1998.Google Scholar
  4. 4.
    O.D. Faugeras, E. Le Bras-Mehlman, and J-D. Boissonnat. Representing Stereo Data with the Delaunay Triangulation. Artificial Intelligence, 44:41–87, 1990.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A.M. Finch, R.C. Wilson, and E.R. Hancock. Matching delaunay graphs. Pattern Recognition, 30(1):123–140, January 1997.Google Scholar
  6. 6.
    S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE PAMI, 18(4):377–388, 1996.Google Scholar
  7. 7.
    M.I. Jordan and R.A. Jacobs. Hierarchical mixture of experts and the EM algorithm. Neural Computation, 6:181–214, 1994.CrossRefGoogle Scholar
  8. 8.
    D.G. Kendall. Shape Manifolds: Procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society, 16:81–121, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Maalsburg, R.P. Wurtz, and W. Konen. Distortion-invariant object-recognition in a dynamic link architecture. IEEE Transactions on Computers, 42:300–311, 1993.CrossRefGoogle Scholar
  10. 10.
    B. Luo, A.D.J. Cross, and E.R. Hancock. Corner detection via topographic analysis of vector potential. Pattern Recognition Letters, 20:635–650, 1999.CrossRefGoogle Scholar
  11. 11.
    A. Rangarajan and E. D. Mjolsness. A lagrangian relaxation network for graph matching. IEEE Transactions on Neural Networks, 7(6):1365–1381, November 1996.Google Scholar
  12. 12.
    S. Sclaroff and A.P. Pentland. Modal Matching for Correspondence and Recognition. IEEE PAMI, 17:545–661, 1995.Google Scholar
  13. 13.
    G.L. Scott and H.C. Longuet-Higgins. An Algorithm for Associating the Features of 2 Images. Proceedings of the Royal Society of London Series B-Biological, 244(1309):21–26, 1991.CrossRefGoogle Scholar
  14. 14.
    L.S. Shapiro and J. M. Brady. Feature-based Correspondence-An Eigenvector Approach. Image and Vision Computing, 10:283–288, 1992.CrossRefGoogle Scholar
  15. 15.
    L.S. Shapiro and J. M. Brady. Rejecting Outliers and Estimating Errors in an Orthogonal-regression Framework. Phil. Trans. Roy. Soc. A, 350:403–439, 1995.CrossRefGoogle Scholar
  16. 16.
    S. Ullman. The Interpretation of Visual Motion. MIT Press, 1979.Google Scholar
  17. 17.
    S. Umeyama. An Eigen Decomposition Approach to Weighted Graph Matching Problems. IEEE PAMI, 10:695–703, 1988.zbMATHGoogle Scholar
  18. 18.
    S. Umeyama. Least Squares Estimation of Transformation Parameters between Two Point sets. IEEE PAMI, 13(4):376–380, 1991.Google Scholar
  19. 19.
    S. Umeyama. Parameterised Point Pattern Matching and its Application to Recognition of Object Families. IEEE PAMI, 15:136–144, 1993.Google Scholar
  20. 20.
    M. Werman and D. Weinshall. Similarity and Affine Invariant Distances between 2D Point Sets. IEEE Trans. on PAMI, 17(8):810–814, 1995.Google Scholar
  21. 21.
    R.C. Wilson and E.R. Hancock. Structural matching by discrete relaxation. IEEE PAMI, 19(6):634–648, June 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • B. Luo
    • 1
    • 2
  • E. R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK
  2. 2.Anhui UniversityP.R. China

Personalised recommendations