Skip to main content

Vortex-Wake Pollution: A Problem in Fluid Mechanics

  • Conference paper
  • First Online:
Fluid Mechanics and the Environment: Dynamical Approaches

Part of the book series: Lecture Notes in Physics ((LNP,volume 566))

  • 749 Accesses

Abstract

The vortex-wake of an airplane contains a system of one or more pairs of trailing vortices. The vortex-wake interacts with the surrounding atmosphere and decays due to instabilities such as the Crow instability. The downwash associated with the wake constitutes a hazard to other airplanes since it may cause an appreciable loss of lift and/or induce a rolling-moment. This can be dangereous if the second airplane is near the ground such as during take-offs and landings. In this paper we begin by drawing parallels between this problem of air-space pollution near airports due to vortex-wakes and other environmental pollution problems. Attention is focussed on how fluid mechanical processes influence different elements of this problem and on fluid mechanical means with potential of alleviating the wake hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. Barber, J. J. Tymczyszyn: ‘Wake vortex attenuation flight tests: a status report’. In:1980 Aircraft Safety and Operating Problems, Proceedings of a conference held at NASA Langley, NASA CP-2170, pp. 387–408.

    Google Scholar 

  2. B. J. Bayley: Phys. Rev. Lett. 57, 2160 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Betz: ZAMM, 12, (1932) also translated as NACA TM 713.

    Google Scholar 

  4. S. A. Brandt, J. D. Iversen: J. Aircraft 14, 1212 (1977)

    Article  Google Scholar 

  5. C. Cerretelli, T. Leweke, C. H. K. Williamson: Bull. Amer. Phys. Soc. 44, no. 8, 94 (1999)

    Google Scholar 

  6. A. L. Chen, J. D. Jacob, Ö. Savas: J. Fluid Mech. 382, 155 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. H. Chevalier: J. Aircraft 10, 14 (1973)

    Article  Google Scholar 

  8. J. P. Christiansen, N. J. Zabusky: J. Fluid Mech. 61, 219 (1973)

    Article  MATH  ADS  Google Scholar 

  9. D. L. Ciffone: J. Aircraft 14, 440 (1977)

    Article  Google Scholar 

  10. C. D. Cone: NASA TR-R-139 (1962)

    Google Scholar 

  11. J. D. Crouch: J. Fluid Mech. 350, 311 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. S. C. Crow: AIAA J. 8, 2172 (1970)

    Article  ADS  Google Scholar 

  13. S. C. Crow: ‘Panel Discussion’. In Aircraft Wake Turbulence and its Detection, ed. by Olsen, Goldberg, Rogers (Plenum Press, New York 1971) pp. 577–583.

    Google Scholar 

  14. S. C. Crow, E. R. Bate: J. Aircraft 13, 476 (1976)

    Article  Google Scholar 

  15. A. C. de Bruin, S. H. Hegen, P. B. Rohne, P. R. Spalart: lsFlow field survey in trailing vortex system behind a civil aircraft model at high lift.’ In The characterization and modification of wakes from lifting vehicles in fluids Conference Proceedings AGARD-CP-584, (1996) pp. 25:1–12.

    Google Scholar 

  16. W. J. Devenport, M. C. Rife, S. I. Liapis, G. J. Follin: J. Fluid Mech. 312, 67 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. W. J. Devenport, J. S. Zsoldos, C. M. Vogel: J. Fluid Mech. 332, 71 (1997)

    ADS  Google Scholar 

  18. W. J. Devenport, C. M. Vogel, C. M., J. S. Zsoldos: J. Fluid Mech. 394, 357 (1999)

    Article  MATH  ADS  Google Scholar 

  19. C. du P. Donaldson, A. J. Bilanin: ‘Vortex wakes of conventional aircraft’. AGARDograph No. 204, (1975)

    Google Scholar 

  20. D. G. Dritschel: J. Fluid Mech. 157, 95 (1985)

    Article  MATH  ADS  Google Scholar 

  21. D. G. Dritschel: J. Fluid Mech. 293, 269 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. J. F. Garten, S. Arendt, S., D. C. Fritts, J. Werne: J. Fluid Mech. 361, 189 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. T. Gerz, F. Holzäpfel: AIAA J. 37, 1270 (1999)

    Article  ADS  Google Scholar 

  24. R. D. Joslin, M. D. Gunzburger, R. A. Nicolaides, G. Erlebacher, M. Y. Hussaini: AIAA J. 35, 816 (1997)

    Article  MATH  ADS  Google Scholar 

  25. W. Thompson: Phil. Mag. 10, 155 (1880)

    Google Scholar 

  26. S. Kida, M. Takaoka: Ann. Rev. Fluid Mech. 26, 169 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Krasny: J. Fluid Mech. 184, 123 (1987)

    Article  ADS  Google Scholar 

  28. I. Kroo: ‘A general approach to multiple lifting surface analysis and design’. AIAA Paper 84–2507, (1984)

    Google Scholar 

  29. G. H. Lee: Aeronautical J. 79, 377 (1975)

    Google Scholar 

  30. S. Leibovich, S. N. Brown, Y. Patel: J. Fluid Mech.173, 595 (1986)

    Article  MATH  ADS  Google Scholar 

  31. S. Leibovich: Ann. Rev. Fluid Mech. 10, 221 (1978)

    Article  ADS  Google Scholar 

  32. A. Leonard: Ann. Rev. Fluid Mech. 17, 523 (1985)

    Article  ADS  Google Scholar 

  33. T. Leweke, C. H. K. Williamson: J. Fluid Mech. 360, 85 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. D. C. Lewellen, W. C. Lewellen: AIAA J. 34, 2337 (1996)

    Article  ADS  Google Scholar 

  35. H.-T. Liu: J. Aircraft 29, 255 (1992)

    Article  Google Scholar 

  36. J. H. McMasters, I. M. Kroo: ‘Advanced configurations for very large subsonic transport airplanes’, In NASA workshop on Potential Impacts of Advanced Aerodynamic Technology, NASA TM 109154, (1994)

    Google Scholar 

  37. M. Melander, N. J. Zabusky, J. C. Mc Williams: J Fluid Mech. 195, 303 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. L. M. Milne-Thomson: Theoretical Aerodynamics, 4th edn. (Dover Publications, New York 1958)

    Google Scholar 

  39. P. Moin, T. R. Bewley: Appl. Mech. Rev. 47, S3 (1994)

    Article  Google Scholar 

  40. NASA Symposium on Wake Vortex Minimization, NASA SP-409 (1979)

    Google Scholar 

  41. R. T. Pierrehumbert: Phys. Rev. Lett. 57, 2157 (1986)

    Article  ADS  Google Scholar 

  42. S. C. Rennich: ‘Accelerated destruction of aircraft wake vortices’. Stanford University, Department of Aeronautics and Astronautics Report 705, (1997)

    Google Scholar 

  43. S. C. Rennich, S. K. Lele: J. Comput. Phys. 137, 101 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. S. C. Rennich, S. K. Lele: J. Aircraft 36, 398 (1999)

    Article  Google Scholar 

  45. F. Risso, A. Corjon, A. Stoessel: AIAA J. 35, 1030 (1997)

    Article  MATH  ADS  Google Scholar 

  46. R. E. Robins, D. P. Delisi: AIAA J. 36, 981 (1998)

    Article  ADS  Google Scholar 

  47. V. J. Rossow: J. Aircraft 14, 283 (1977)

    Article  Google Scholar 

  48. P. G. Saffman: Vortex Dynamics (Cambridge Univ. Press, Cambridge 1992)

    MATH  Google Scholar 

  49. T. Sarpkaya: J. Fluid Mech. 136, 85 (1983)

    Article  ADS  Google Scholar 

  50. T. Sarpkaya, J. J. Daly: J. Aircraft 24, 399 (1987)

    Article  ADS  Google Scholar 

  51. P. R. Spalart, A. A. Wray: ‘Initiation of Crow instability by atmospheric turbulence’. In The characterization and modification of wakes from lifting vehicles in fluids Conference Proceedings AGARD-CP-584, (1996), pp. 18:1–8

    Google Scholar 

  52. P. R. Spalart: Ann. Rev. Fluid Mech. 30, 107 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  53. J. R. Spreiter, A. H. Sacks: J. Aero. Sci. 18, 21 (1951)

    MATH  MathSciNet  Google Scholar 

  54. H. Tcnnekes, J. L. Lumley: A First Course in Turbulence (MIT Press, Cambridge 1974)

    Google Scholar 

  55. P. J. Thomas, D. Auerbach: J. Fluid Mech. 265, 289 (1994)

    Article  ADS  Google Scholar 

  56. I. Tombach: J. Aircraft 10, 641 (1973)

    Article  Google Scholar 

  57. C. Y. Tsai, S. E. Widnall: J. Fluid Mech. 73, 721 (1976)

    Article  MATH  ADS  Google Scholar 

  58. D. Vicroy, P. M. Vijgen, H. M. Reimer, J. L. Gallegos and P. R. Spalart: ‘Recent NASA wake-vortex flight tests, flow-physics database and wake-development analysis’. SAE Paper 985592, World Aviation Conference, Anaheim. (1998) Video tape of flight test available as L#0998-155 3:38 from NASA Langley center.

    Google Scholar 

  59. Th. von Karman, J. M. Burgers: ‘General aerodynamic theory-perfect fluids’. In: Aerodynamic Theory, Vol. II, ed. by W. F. Durand (1935)

    Google Scholar 

  60. F. Waleffe: Phys. Fluids 2A, 76 (1990)

    ADS  MathSciNet  Google Scholar 

  61. S. E. Widnall: Ann. Rev. Fluid Mech. 7, 141 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lele, S.K. (2001). Vortex-Wake Pollution: A Problem in Fluid Mechanics. In: Lumley, J.L. (eds) Fluid Mechanics and the Environment: Dynamical Approaches. Lecture Notes in Physics, vol 566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44512-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44512-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41475-9

  • Online ISBN: 978-3-540-44512-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics