Skip to main content

Free Cooling of Particles with Rotational Degrees of Freedom

  • Chapter
  • First Online:
Granular Gases

Part of the book series: Lecture Notes in Physics ((LNP,volume 564))

Abstract

Free cooling of granular materials is analyzed on the basis of a pseudo- Liouville operator. Exchange of translational and rotational energy requires surface roughness for spherical grains, but occurs for non-spherical grains, like needles, even if they are perfectly smooth. Based on the assumption of a homogeneous cooling state, we derive an approximate analytical theory. It predicts that cooling of both rough spheres and smooth needles proceeds in two stages: An exponentially fast decay to a state with stationary ratio of translational and rotational energy and a subsequent algebraic decay of the total energy. These results are confirmed by simulations for large systems of moderate density. For higher densities, we observe deviations from the homogeneous state as well as large-scale structures in the velocity field. We study non-Gaussian distributions of the momenta perturbatively and observe a breakdown of the expansion for particular values of surface roughness and normal restitution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review on classical liquids see e.g. J.-P. Hansen and I. R. McDonald tiTheory of Simple Liquids, Academic Press (1986).

    Google Scholar 

  2. E. Thiele, J. Chem. Phys. 39, 474 (1963); M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963); J. Math. Phys. 5, 634 (1964); L. Verlet and D. Levesque, Mol. Phys. 46, 969 (1982).

    Article  ADS  Google Scholar 

  3. J. L. Lebowitz, J. K. Percus and J. Sykes, Phys. Rev. 188, 487 (1996); H. H. U. Konijnendijk and J. M. van Leeuwen, Physica 64, 342 (1973); P. M. Furtado, G. F. Mazenko and S. Yip, Phys. Rev. A12, 1653 (1975); H. van Beijeren and M. H. Ernst, J. Stat. Phys. 21, 125 (1979).

    Article  ADS  Google Scholar 

  4. B. J. Alder, D. M. Gass and T. E. Wainwright, J. Chem. Phys. 53, 3813 (1970).

    Article  ADS  Google Scholar 

  5. J. J. Erpenbeck and W. W. Wood, J. Stat. Phys. 24, 455 (1981).

    Article  ADS  Google Scholar 

  6. B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962).

    Article  ADS  Google Scholar 

  7. J. T. Jenkins and S. B. Savage, J. Fluid Mech.130, 187 (1983); C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, J. Fluid Mech.140, 223 (1984). A. Goldshtein and M. Shapiro, J. Fluid Mech.282, 75 (1995).

    Article  MATH  ADS  Google Scholar 

  8. J. T. Jenkins and M. W. Richman, Phys. of Fluids 28, 3485 (1985).

    Article  MATH  ADS  Google Scholar 

  9. C. K. K. Lun and S. B. Savage, J. Appl. Mech. 54, 47 (1987).

    Article  MATH  Google Scholar 

  10. C. K. K. Lun, J. Fluid Mech. 233, 539 (1991).

    Article  MATH  ADS  Google Scholar 

  11. A. Goldshtein and M. Shapiro, J. Fluid Mech. 282, 75 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. H. Grad Principles of the kinetic theory of gases in Handbuch der Physik, ed. S. F. Fluegge, Springer (1958).

    Google Scholar 

  13. L. Waldmann Transporterscheinungen in Gasen von mittlerem Druck in Handbuch der Physik, ed. S. F. Fluegge, Springer (1958).

    Google Scholar 

  14. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge University Press, London (1960).

    Google Scholar 

  15. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993).

    Article  ADS  Google Scholar 

  16. S. McNamara and S. Luding, Phys. Rev. E 58, 2247 (1998).

    Article  ADS  Google Scholar 

  17. M. Huthmann and A. Zippelius, Phys. Rev. E 56, R6275 (1997).

    Article  ADS  Google Scholar 

  18. S. Luding, M. Huthmann, S. McNamara, A. Zippelius, Phys. Rev. E 58, 3416 (1998).

    Article  ADS  Google Scholar 

  19. O. Walton, in Energy and Technology Review, edited by A. J. Poggio, (Lawrence Livermore National Laboratory, Livermore, CA) (1988); M. A. Hopkins and H. Shen in Micromechanics of Granular Materials, eds. M. Satake and J. T. Jenkins, Amsterdam, Elsevier, (1987).

    Google Scholar 

  20. G. W. Baxter and R. P. Behringer, Phys. Rev. A42, 1017 (1990).

    ADS  Google Scholar 

  21. B. Brogliato, Nonsmooth Impact mechanics, Springer 1996.

    Google Scholar 

  22. M. Huthmann, T. Aspelmeier and A. Zippelius, Phys. Rev. E 60, 654 (1999).

    Article  ADS  Google Scholar 

  23. M. H. Ernst, J. R. Dorfmann, W. R. Hoegy, and J. M. J. van Leeuwen, Physica 45, 127 (1969).

    Article  ADS  Google Scholar 

  24. P. Resibois and J. L. Lebowitz, J. Stat. Phys. 12, 483 (1975); P. Resibois, J. Stat. Phys. 13, 393 (1975); E. Leutheusser, J. Phys. C15, 2801 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Frenkeland J. F. Maguire, Mol. Phys. 49, 503 (1983).

    Article  ADS  Google Scholar 

  26. P. K. Ha., Journ. of Fluid. Mech. 134, 401 (1983).

    Article  ADS  Google Scholar 

  27. T. P. C. van Noije, M. H. Ernst, R. Brito, Physica A 251 266 (1998).

    Article  Google Scholar 

  28. S. McNamara and W. Young, Phys. Rev. E 53, 5089 (1996).

    Article  ADS  Google Scholar 

  29. R. Brito and M. H. Ernst, Europhysics Letters 43, 497 (1998).

    Article  ADS  Google Scholar 

  30. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer (1966).

    Google Scholar 

  31. O. Herbst, M. Huthmann, and A. Zippelius (preprint) (1999).

    Google Scholar 

  32. T. P. C. van Noije, M. H. Ernst, Granular Matter, 1, 57 (1998).

    Article  Google Scholar 

  33. M. Huthmann, J. A. G. Orza, and R. Brito (unpublished).

    Google Scholar 

  34. J. Javier Brey, M. J. Ruiz Montero and D. Cubero, Phys. Rev. E, 54 3664 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aspelmeier, T., Huthmann, M., Zippelius, A. (2001). Free Cooling of Particles with Rotational Degrees of Freedom. In: Pöschel, T., Luding, S. (eds) Granular Gases. Lecture Notes in Physics, vol 564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44506-4_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44506-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41458-2

  • Online ISBN: 978-3-540-44506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics