Granular Gases pp 330-349 | Cite as

Numerical Simulations of the Collisional Dynamics of Planetary Rings

  • Heikki Salo
Part of the Lecture Notes in Physics book series (LNP, volume 564)


Numerical simulations of planetary ring dynamics are reviewed, with main emphasis on local 3-dimensional simulations, which utilize a co-moving calculation cell with periodic boundary conditions. Various factors affecting the local balance between collisional dissipation and viscous gain of energy from the systematic velocity field are considered, including gravitational encounters and collective gravitational forces besides physical impacts. Simulation examples of the effects of particle size distribution, particles’ spin motion, and different forms of the coefficient of restitution are given. Viscous stability properties are also briefly discussed: examples of both instabilities and overstabilities are given. In this context 2D-simulations are useful, eventhough physically unrealistic even for extremely flattened planetary ring systems.


Orbital Period Velocity Dispersion Identical Particle Dense Ring Impact Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Araki, S. Tremaine. The dynamics of dense particle disks. Icarus 65 83–109 (1986).CrossRefADSGoogle Scholar
  2. 2.
    A. Brahic. Systems of colliding bodies in a gravitational field. Astron. Astropys. 54, 895–907 (1977).ADSGoogle Scholar
  3. 3.
    F. G. Bridges, A. Hatzes, D. N. C. Lin. Structure, stability and evolution of Saturn’s rings. Nature 309, 333–335 (1984).CrossRefADSGoogle Scholar
  4. 4.
    N. V. Brilliantov, et al. Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996).CrossRefADSGoogle Scholar
  5. 5.
    J. N. Cuzzi, et al. The vertical structure and thickness of Saturn’s rings. Icarus 38, 54–68 (1979).CrossRefADSGoogle Scholar
  6. 6.
    J. P. Dilley. Energy loss in collisions of icy spheres: Loss mechanism and sizemass dependence. Icarus 105, 225–234 (1993).CrossRefADSGoogle Scholar
  7. 7.
    L. Dones, J. N. Cuzzi, R. M. Showalter. Voyager photometry of Saturn’s A ring. Icarus 105, 184–215 (1993).CrossRefADSGoogle Scholar
  8. 8.
    P. Goldreich, and S. Tremaine. The velocity dispersion in Saturn’s rings. Icarus 34, 227–239 (1978).CrossRefADSGoogle Scholar
  9. 9.
    P. Goldreich, and S. Tremaine. The dynamics of planetary rings. Ann. Rev. Astron. Astrophys. 20, 249–284 (1982).CrossRefADSGoogle Scholar
  10. 10.
    A. P. Hatzes, F. G. Bridges, and D. N. C. Lin. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. astr. Soc. 231, 1091–1115 (1988).ADSGoogle Scholar
  11. 11.
    K. A. Hämeen-Anttila. An improved and generalized theory for the collisional evolution of Keplerian systems. Earth, Moon, and Planets 31, 271–299 (1978).CrossRefGoogle Scholar
  12. 12.
    K. A. Hämeen-Anttila, and J. Lukkari. Numerical simulations of collisions in Keplerian systems. Astrophys. Space Sci. 71, 475–497 (1980).ADSGoogle Scholar
  13. 13.
    K. A. Hämeen-Anttila, and H. Salo. Generalized theory of impacts in particulate systems. Earth, Moon, and Planets 62, 47–84 (1993).zbMATHCrossRefADSGoogle Scholar
  14. 14.
    W. H. Julian, and A. Toomre. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J. 146, 810–827 (1966).CrossRefADSGoogle Scholar
  15. 15.
    D. N. C. Lin, and P. Bodenheimer. On the stability of Saturn’s rings. Astrophys. J. 248, L83–L86 (1981).CrossRefADSGoogle Scholar
  16. 16.
    J. Lukkari. Collisional amplification of density fluctuations in planetary rings. Nature, 292, 433–435 (1982).CrossRefADSGoogle Scholar
  17. 17.
    J. Lukkari, and H. Salo. Numerical Simulations of Collisions in Self-Gravitating Systems. Earth, Moon, and Planets 31, 1–13 (1984).CrossRefADSGoogle Scholar
  18. 18.
    E. A. Marouf et al. Particle size distribution in Saturn’s rings from Voyager I radio occultation Icarus 54, 189–211 (1983).CrossRefADSGoogle Scholar
  19. 19.
    K. Ohtsuki. Capture probability of colliding planetesimals: dynamical constraints on accretion of planets, satellites, and ring particles. Icarus 106, 228–246 (1993).CrossRefADSGoogle Scholar
  20. 20.
    D. C. Richardson. A new tree code method for simulation of planetesimal dynamics. Mon. Not. R. astr. Soc. 264, 396–414 (1993).ADSGoogle Scholar
  21. 21.
    H. Salo. Collisional Evolution of Rotating, Non-Identical Particles. Earth, Moon, and Planets 38, 149–181 (1987).zbMATHCrossRefADSGoogle Scholar
  22. 22.
    H. Salo. Numerical Simulations of Collisions between Rotating Particles. Icarus 70, 37–51 (1987).CrossRefADSGoogle Scholar
  23. 23.
    H. Salo. Numerical simulations of dense collisional systems. Icarus 90, 254–270. See also Erratum, Icarus 92, 367-368 (1991).Google Scholar
  24. 24.
    H. Salo. Numerical simulations of dense collisional systems II: Extended distribution of particle sizes. Icarus 96, 85–106 (1992).CrossRefADSGoogle Scholar
  25. 25.
    H. Salo. Gravitational wakes in Saturn’s rings. Nature 359, 619–621 (1992).CrossRefADSGoogle Scholar
  26. 26.
    H. Salo. The dynamics of dense planetary rings III: Self-gravitating identical particles. Icarus 117, 287–312 (1995).CrossRefADSGoogle Scholar
  27. 27.
    U. Schmit, and W. M. Tscharnuter. A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn’s B-ring. Icarus 115, 304–319 (1995).CrossRefADSGoogle Scholar
  28. 28.
    U. Schmit, W. M. Tscharnuter. On the formation of the fine-scale structure in Saturn’s B-ring. Icarus 138, 173–187 (1999).CrossRefADSGoogle Scholar
  29. 29.
    F. Spahn, J.-M. Hertzsch, N. V. Brilliantov. The role of particle collisions for the dynamics in planetary rings. Chaos, Solitons and Fractals 5, 1945–1946 (1995).CrossRefADSGoogle Scholar
  30. 30.
    G. R. Stewart, D. N. C. Lin, and P. Bodenheimer. Collision induced transport properties in planetary rings. In Planetary Rings (Eds. R. Greenberg, A. Brahic) pp. 447–512. Univ. of Arizona Press, Tucson (1984).Google Scholar
  31. 31.
    K. D. Supulver, F. Bridges, D. N. C. Lin. The coefficient of restitution of ice particles in glancing collisions: experimental results for unfrosted surfaces. Icarus 113, 188–199 (1995).CrossRefADSGoogle Scholar
  32. 32.
    A. Toomre. On the gravitationalstabil ity of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).CrossRefADSGoogle Scholar
  33. 33.
    A. Toomre. Gas-hungry Sc spirals. In Dynamics and interactions of Galaxies (Ed. R. Wielen), pp. 292–303. Springer, Berlin (1990).Google Scholar
  34. 34.
    J. Trulsen. Numerical simulation of jet streams I: The three-dimensional case. Astrophys. Space Sci. 17, 241–262 (1972).CrossRefADSGoogle Scholar
  35. 35.
    S. J. Weidenschilling et al. Ring particles: Collisional interactions and physical nature. In Planetary Rings, R. Greenberg, A. Brahic (Eds.) pp. 367–415. Univ. of Arizona Press, Tucson (1984).Google Scholar
  36. 36.
    W. Ward. On the radialstructure of Saturn’s rings. Geophys. Res. Lett. 8, 641–643 (1981).ADSCrossRefGoogle Scholar
  37. 37.
    J. Wisdom, and S. Tremaine. Local simulations of planetary rings. Astron. J. 95, 925–940 (1988).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Heikki Salo
    • 1
  1. 1.Division of AstronomyUniversity of OuluOuluFinland

Personalised recommendations