Systematization of Approaches to Equality—Generating Constraints

  • Aleksander Binemann-Zdanowicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1884)


The aim of this paper is to propose a uniform terminology for functional dependencies and their counterparts for n-ary relationship types. A variety of existing approaches is presented and the differences between them are discussed. A sound and complete axiomatization is introduced that allows one to check the consistency of a cardinality constraint specification and to derive new constraints from existing ones. The advantage of our system of rules is its applicability to the whole variety of existing approaches in this area. Our deductive system is non-redundant.


Functional Dependency Generate Constraint Deductive System Axiom System Relationship Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arm74.
    W. W. Armstrong: Dependency structure of database relationships, Proceedings IFIP, North Holland, Amsterdam, 1974, p. 580–583Google Scholar
  2. Bel95.
    S. Bell: The expanded implication problem of data dependencies, Technical Report LS-8-16, Computer Science Department, University of Dortmund, 1995Google Scholar
  3. Bin00.
    A. Binemann-Zdanowicz: Systematization of Approaches to Equality-Generating Constraints, Computer Science Report 02-2000, Brandenburg University of Technology, Institute of Computer Science, Cottbus, 2000Google Scholar
  4. Dol99.
    T. Doležal: Cardinality constraints for n-ary relationship types, ADBIS’ 99, Maribor, 1999Google Scholar
  5. DoD99.
    T. Doležal: Cardinality constraints and associative data model, Doctoral thesis, Charles University Prague, 1999Google Scholar
  6. HeS95.
    A. Heuer, G. Saake: Datenbanken, Konzepte und Sprachen (in German), International Thomson Publishing Group, 1995Google Scholar
  7. Jan89.
    J. M. Janas: Covers for functional independencies, MFDBS 89, LNCS 364, p. 294–268, Visegrád, 1989Google Scholar
  8. Kle98.
    M. Klettke: Akquisition von Integritätsbedingungen in Datenbanken, Infix Publishers, Sankt Augustin, 1998Google Scholar
  9. MaR92.
    H. Mannila, K.-J. Räihä: The Design of Relational Databases, Addison-Wesley, Reading, 1992zbMATHGoogle Scholar
  10. McA98.
    A. McAllister: Complete rules for n-ary relationship cardinality constraints, Data & Knowledge Engineering 27 (1998) 255–288zbMATHCrossRefGoogle Scholar
  11. Par89.
    J. Paredaens, P. DeBra, M. Gyssens, D. VanGucht: The Structure of the Relational Database Model, Springer, Berlin, 1989zbMATHGoogle Scholar
  12. RAD97.
    M. Albrecht, M. Altus, E. Buchholz, H. Cyriaks, A. Düsterhöft, J. Lewerenz, H. Mehlan, M. Steeg, K.-D. Schewe, B. Thalheim: Rapid Application and Database Development-Project Report, internal report, Brandenburg University of Technology at Cottbus, Cottbus, 1997Google Scholar
  13. Tha85.
    B. Thalheim: Abhängigkeiten in Relationen, habilitation thesis, Technical University of Dresden, 1985Google Scholar
  14. Tha91.
    B. Thalheim: Dependencies in Relational Databases, Teubner, Leipzig, 1991zbMATHGoogle Scholar
  15. Tha00.
    B. Thalheim: Entity-Relationship Modeling-Foundations of Database Technology, Springer, Berlin, 2000zbMATHGoogle Scholar
  16. Ull88.
    J. D. Ullman: Principles of Database and Knowledge-Base Systems, Computer Science Press, Rockville, 1988Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Aleksander Binemann-Zdanowicz
    • 1
  1. 1.Institute of Computer ScienceBrandenburg University of Technology at CottbusGermany

Personalised recommendations