Advertisement

Morphological Operators with Discrete Line Segments

  • Pierre Soille
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

The morphological approach to image processing consists in probing the image structures with a pattern of known shape called structuring element. In this paper, we concentrate on structuring elements in the formo f discrete line segments, including periodic lines. We investigate fast algorithms, decomposition/cascade schemes, and translation invariance issues. Several application examples are provided.

Keywords

Line Segment Grey Scale Image Structure Mathematical Morphology Morphological Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Adams. Radial decomposition of discs and spheres. Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, 55(5):325–332, September 1993. 90, 91Google Scholar
  2. 2.
    J. Bresenham. Algorithm for computer control of digital plotter. IBM System Journal, 4:25–30, 1965. 79CrossRefGoogle Scholar
  3. 3.
    J. Farey. On a curious property of vulgar fractions. Philosophical Magazine, 1816. See http://cut-the-knot.com/blue/FareyHistory.html for a historical note and a copy of Farey’s original letter. 82
  4. 4.
    J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer graphics-Principles and Practice-. Addison-Wesley, 2nd edition, 1990. 79Google Scholar
  5. 5.
    G. Garibotto and L. Lambarelli. Fast on-line implementation of two dimensional median filtering. Electronic Letters, 15(1):24–25, January 1979. 92Google Scholar
  6. 6.
    D. Gevorkian, J. Astola, and S. Atourian. Improving Gil-Werman algorithm for runningMin and Max filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):526–529, May 1997. 82CrossRefGoogle Scholar
  7. 7.
    J. Gil and R. Kimmel. Efficient dilation, erosion, opening, and closing algorithms. In J. Goutsias, L. Vincent, and D. Bloomberg, editors, Mathematical Morphology and Its Applications to Image and Signal Processing, volume 18 of Computational Imaging and Vision, pages 301–310, Boston, 2000. Kluwer Academic Publishers. Proc. of SMM’2000, Palo Alto, June 26–29. 83Google Scholar
  8. 8.
    J. Gil and M. Werman. Computing 2-D min, median, and max filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5):504–507, May 1993. 82CrossRefGoogle Scholar
  9. 9.
    H. Heijmans. Morphological image operators. Advances in Electronics and Electron Physics. Academic Press, Boston, 1994. 78Google Scholar
  10. 10.
    T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(1):13–18, February 1979. 92CrossRefGoogle Scholar
  11. 11.
    R. Jones and P. Soille. Periodic lines and their applications to granulometries. In P. Maragos, W. Schafer, and M. Butt, editors, Mathematical Morphology and its Applications to Image and Signal Processing, pages 264–272. Kluwer Academic Publishers, 1996. Proc. of ISMM’96. 80Google Scholar
  12. 12.
    R. Jones and P. Soille. Periodic lines: De.nition, cascades, and application to granulometries. Pattern Recognition Letters, 17(10):1057–1063, September 1996. 80, 89, 90CrossRefGoogle Scholar
  13. 13.
    C. Kim. On the cellular convexity of complexes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3:617–625, 1981. 79CrossRefGoogle Scholar
  14. 14.
    C. Kim. On cellular straight line segments. Computer Graphics and Image Processing, 18(4):369–381, April 1982. 79zbMATHCrossRefGoogle Scholar
  15. 15.
    G. Matheron. Random sets and integral geometry. Wiley, New York, 1975. 78, 90zbMATHGoogle Scholar
  16. 16.
    H. Minkowski. Über die Begriffe Länge, Oberfläche und Volumen. Jahresbericht der Deutschen Mathematiker Vereinigung, 9:115–121, 1901. 84Google Scholar
  17. 17.
    D. Nadadur and R. Haralick. Recursive binary dilation and erosion using digital line structuring elements in arbitrary orientations. IEEE Transactions on Image Processing, 9(5):749–759, May 2000. 83CrossRefGoogle Scholar
  18. 18.
    J.-F. Rivest, J. Serra, and P. Soille. Dimensionality in image analysis. Journal of Visual Communication and Image Representation, 3(2):137–146, 1992. 86CrossRefGoogle Scholar
  19. 19.
    A. Rosenfeld. Digital straight line segments. IEEE Transactions on Computers, 23:1264–1269, 1974. 78zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Serra. Image analysis and mathematical morphology. Academic Press, London, 1982. 78zbMATHGoogle Scholar
  21. 21.
    J. Serra, editor. Image analysis and mathematical morphology. Volume 2: Theoretical advances. Academic Press, London, 1988. 78Google Scholar
  22. 22.
    P. Soille. Grey scale convex hulls: definition, implementation, and application. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its Applications to Image and Signal Processing, volume 12 of Computational Imaging and Vision, pages 83–90. Kluwer Academic Publishers, Dordrecht, 1998. Proc. of ISMM’98. 94Google Scholar
  23. 23.
    P. Soille. Morphological Image Analysis. Springer-Verlag, Berlin, Heidelberg, New York, 1999. 78, 82zbMATHGoogle Scholar
  24. 24.
    P. Soille. Fromb inary to grey scale convex hulls. Fundamenta Informaticae, 41(1–2):131–146, January 2000. 94, 96zbMATHMathSciNetGoogle Scholar
  25. 25.
    P. Soille. Morphological image analysis applied to crop field mapping. Image and Vision Computing, 18(13), October 2000. 92Google Scholar
  26. 26.
    P. Soille, E. Breen, and R. Jones. A fast algorithm for min/max filters along lines of arbitrary orientation. In I. Pitas, editor, Proc. of 1995 IEEE Workshop on Nonlinear Signal and Image Processing, pages 987–990, Neos Marmaras, June 1995. 83Google Scholar
  27. 27.
    P. Soille, E. Breen, and R. Jones. Recursive implementation of erosions and dilations along discrete lines at arbitrary angles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(5):562–567, May 1996. 83, 84CrossRefGoogle Scholar
  28. 28.
    P. Soille and R. Jones. Periodic lines: Fast implementation and extensions to greyscale structuring elements and 3-D images. Technical report, Fraunhofer IPK (Berlin)/CSIRO DMS (Sydney), 1995. 86Google Scholar
  29. 29.
    P. Soille and J.-F. Rivest. Dimensionality of morphological operators and cluster analysis. In E. Dougherty, P. Gader, and J. Serra, editors, Image algebra and morphological image processing IV, volume 2030, pages 43–53. Society of Photo-Instrumentation Engineers, July 1993. 86Google Scholar
  30. 30.
    P. Soille and H. Talbot. Image structure orientation using mathematical morphology. In A. Jain, S. Venkatesh, and B. Lovell, editors, 14th International Conference on Pattern Recognition, volume 2, pages 1467–1469, Brisbane, August 1998. IAPR, IEEE Computer Society. 92Google Scholar
  31. 31.
    P. Soille and H. Talbot. Directional morphological filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, Submitted. 84, 92Google Scholar
  32. 32.
    S. Sternberg. Grayscale morphology. Computer Graphics and Image Processing, 35:333–355, 1986. 86CrossRefGoogle Scholar
  33. 33.
    R. van den Boomgaard and R. van Balen. Methods for fast morphological image transforms using bitmapped binary images. Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, 54(3):252–258, May 1992. 88Google Scholar
  34. 34.
    M. van Herk. A fast algorithm for local minimum and maximum filters on rectangular and octogonal kernels. Pattern Recognition Letters, 13:517–521, 1992. 82CrossRefGoogle Scholar
  35. 35.
    P. Whelan, P. Soille, and A. Drimbarean. Real-time registration of paper watermarks. Real-Time Imaging, page In Press, 2000. 92Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pierre Soille
    • 1
  1. 1.EC Joint Research CentreSpace Applications InstituteIspraItaly

Personalised recommendations