Parallel Line Grouping Based on Interval Graphs

  • Peter Veelaert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)


We use an interval graph to model the uncertainty of line slopes in a digital image. We propose two different algorithms that group lines into classes of lines that are parallel, or almost parallel. This grouping is strongly based on the Helly-type property of parallelism in the digital plane: a group of lines is digitally parallel if and only if each pair of lines is digitally parallel. As a result, the extraction of parallel groups is reduced to the extraction of cliques in the interval graph generated by the slope intervals. Likewise, the extraction of lines that are almost parallel becomes equivalent to the detection of subgraphs that resemble cliques.


  1. 1.
    H. F. Durrant-Whyte: Uncertain Geometry. In Geometric Reasoning, Eds. Kapur and Mundy, 447–481 (1989) 530Google Scholar
  2. 2.
    H. J. A. M. Heijmans and A. Toet: Morphological sampling. Computer Vision, Graphics & Image Processing: Image Understanding 54, 384–400 (1991) 532zbMATHGoogle Scholar
  3. 3.
    M. Grötschel, L. Lovász, and A. Schrijver: Geometric Algorithms and Combinatorial Optimization. New York: Springer-Verlag, 2nd Ed. (1993) 536zbMATHGoogle Scholar
  4. 4.
    L. J. Latecki, C. Conrad, and A. Gross: Preserving topology by a digitization process. J. Math. Imaging and Vision. 8, 131–159 (1998) 541zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Lowe: 3-D object recognition from single 2-D images. Artificial Intelligence 31, 355–395 (1987) 531CrossRefGoogle Scholar
  6. 6.
    J.-P. Réveillès: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse de Doctorat d’Etat. Université Louis Pasteur, Strasbourg (1991) 532Google Scholar
  7. 7.
    C. Ronse and M. Tajine: Discretization in Hausdorff space. J. Math. Imaging and Vision. 12, 219–242 (2000) 532, 541zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    P. Veelaert: Geometric constructions in the digital plane. J. Math. Imaging and Vision. 11, 99–118 (1999) 530, 531, 532, 533, 534, 535zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    P. Veelaert: Algorithms that measure parallelism and concurrency of lines in digital images. Proceedings of SPIE’s Conference on Vision Geometry VIII, (Denver), SPIE, 69–79 (1999) 530, 531, 533, 534, 535Google Scholar
  10. 10.
    P. Veelaert: Line grouping based on uncertainty modeling of parallelism and collinearity. Proceedings of SPIE’s Conference on Vision Geometry IX, (San Diego), SPIE (2000) 532Google Scholar
  11. 11.
    D. B. West: Introduction to Graph Theory. Upper Saddle River: Prentice Hall (1996) 536, 537zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Peter Veelaert
    • 1
  1. 1.HogentGhentBelgium

Personalised recommendations