Towards Feature Fusion - The Synthesis of Contour Sections Distinguishing Contours from Different Classes

  • Dag Pechtel
  • Klaus-Dieter Kuhnert 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

In real world problems, where the objects are in general complex and deformed, the automatic generation of local characteristics is necessary in order to distinguish different object classes.

This paper presents an approach towards the automatic synthesis of significant local contour sections of closed, discrete, complex, and deformed 2D-object contours for the distinction of different classes. Neighboring contour points are determined and synthesized (feature fusion) into feature groups. Exclusively with the help of these feature groups the method distinguishes between different 2D-object contour classes of a certain domain. The basic idea is to get only the necessary information of a contour or a contour class for recognition.

Keywords

Plastic Bottle Contour Point Feature Fusion Automatic Synthesis Bottle Neck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. AG96.
    Alt, H., Guibas, L. J.: Discrete Geometric Shapes: Matching, Interpolation, and Approximation-A Survey. Technical Reports of FU Berlin (1996), Institut für Informatik u. Mathematik. 521Google Scholar
  2. BCGJ98.
    Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the similarity of deformable shapes. Vision Research 38 (1998), 2365–2385. 518CrossRefGoogle Scholar
  3. B57.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, New Jersey (1957). 521Google Scholar
  4. HS97.
    Hoffman, D. D., Singh, M.: Salience of visual parts. Cognition 63 (1997), 29–78. 518CrossRefGoogle Scholar
  5. KTZ94.
    Kimia, B. B., Tannenbaum, A. R., Zucker, S.: Shapes, shocks, and deformations 1: The components of shape and the reaction-diffusion space. Int. Journal of Computer vision 15(3) (1995), 189–224. 518CrossRefGoogle Scholar
  6. KW96.
    Kupeev, K., Wolfson, H.: A new method of estimating shape similarity. Pattern Recognition Letters 17 (1996), 873–887. 518CrossRefGoogle Scholar
  7. LL98a.
    Latecki, L. J., Lakämper, R.: Discrete Approach to Curve Evolution. In Levi, P., Ahlers, R.-J., May, F. and Schanz, M. (Edts.): Mustererkennung 1998, 20. DAGM-Symposium, 85–92. 518Google Scholar
  8. LL98b.
    Latecki, L. J., Lakämper, R.: Shape decomposition and shape similarity measure. In Levi, P., Ahlers, R.-J., May, F. and Schanz, M. (Edts.): Mustererkennung 1998, 20. DAGM-Symposium, 367–376. 518Google Scholar
  9. L97.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31 (1997), 983–1001. 518CrossRefGoogle Scholar
  10. P77.
    Pavlidis, T.:Structural Pattern Recognition. Springer-Verlag, Berlin (1977). 518MATHGoogle Scholar
  11. PK00.
    Pechtel, D., Kuhnert, K.-D.: Generating Automatically Local Feature Groups of Complex and Deformed Objects. Appears in Gaul, W., Decker, R. (eds.): Classification and Information Processing at the Turn of the Millenium. Proc. 23th Ann. Conf. of GfKl, Bielefeld, March 10–12, 1999. Springer, Heidelberg, 2000, 237–244. 519, 520, 521, 523Google Scholar
  12. PM47.
    Pitts, W., McCulloch W.: How we know universals: the perception of auditory and visual forms. Bulleting of Mathematical Biophysics 9 (1947), 127–147. 518CrossRefGoogle Scholar
  13. SGWM93.
    Sederberg, T., Gao, P., Wang, G., Mu, H.: 2D shape blending: An Intrinsic Solution to the Vertex Path Problem. Computer Graphics 38 (1993) 15–18. 518Google Scholar
  14. SIK95.
    Siddiqi, K., Kimia, B.: Parts of Visual Form: Computational Aspects. IEEE Transactions On Pattern Anal. And Mach. Intell. 17 (1995) 239–251. 518CrossRefGoogle Scholar
  15. STK95.
    Siddiqi, K., Tresnes, K., and Kimia, B.: Parts of visual form: ecological and psychophysical aspects. In Proc. IAPR’s Int.Workshop on Visual Form (1994). 518Google Scholar
  16. SK83.
    Sanko., D., Kruskal, B. K. (Eds.): Time warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading (1983). 519, 521Google Scholar
  17. U96.
    Ullman, S.: High-level Vision. A Bradford Book, The MIT Press, Cambridge, Massachusetts (1996). 518Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Dag Pechtel
    • 1
  • Klaus-Dieter Kuhnert 
    • 1
  1. 1.University of SiegenSiegenGermany

Personalised recommendations