Advertisement

An Efficient Shape-Based Approach to Image Retrieval

  • Ioannis Fudos
  • Leonidas Palios
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

We consider the problem of finding the best match for a given query shape among candidate shapes stored in a shape base. This is central to a wide range of applications, such as, digital libraries, digital film databases, environmental sciences, and satellite image repositories. We present an efficient matching algorithm built around a novel similarity criterion and based on shape normalization about the shape’s diameter, which reduces the effects of noise or limited accuracy during the shape extraction procedure. Our matching algorithm works by gradually “fattening” the query shape untilthe best match is discovered. The algorithm exhibits poly-logarithmic time behavior assuming uniform distribution of the shape vertices in the locus of their normalized positions.

Keywords

image retrieval shape-based matching image bases 

References

  1. 1.
    M. Ankerst, H. P. Kriegel, and T. Seidl. Multistep approach for shape similarity search in image databases. IEEE Transactions on Knowledge and Data Engineering, 10(6):996–1004, 1998. 506CrossRefGoogle Scholar
  2. 2.
    E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An efficiently computable metric for comparing polygonal shapes. IEEE Transactions on Knowledge and Data Engineering, 13(3):209–216, 1997. 507Google Scholar
  3. 3.
    H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric correspondence and chamfer matching: Two new techniques for image matching. In Proc. of the 5th IJCAI, pages 659–663, Cambridge, MA, 1977. 506Google Scholar
  4. 4.
    A. Del Bimbo and P. Pala. Visualim age retrievalb y elastic matching of user sketches. IEEE Transactions on Knowledge and Data Engineering, 19(2):121–132, 1997. 506Google Scholar
  5. 5.
    G. Borgefors. An improved version of the chamfer matching algorithm. In ICPR1984, pages 1175–1177, 1984. 506Google Scholar
  6. 6.
    G. Borgefors. Hierarchicalc hamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849–865, 1988. 506CrossRefGoogle Scholar
  7. 7.
    C. Carson and V. E. Ogle. Storage and retrieval of feature data for a very large online image collection. IEEE Bulletin of the Tech. Comm. on Data Engineering, 19(4):19–27, 1996. 505Google Scholar
  8. 8.
    B. Chazelle and L. J. Guibas. Fractional cascading: I. a data structuring technique; II. applications. Algorithmica, 1:133–191, 1986. 513zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ronald Fagin and Larry Stockmeyer. Relaxing the triangle inequality in pattern matching. International Journal of Computer Vision, to appear, 1999. 506, 507Google Scholar
  10. 10.
    M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. QBIC: Query by image and video content. IEEE Computer, 28(9):23–32, 1995. 505Google Scholar
  11. 11.
    J. E. Gary and R. Mehrotra. Similar shape retrieval using a structural feature index. Information Systems, 18(7):527–537, 1993. 506CrossRefGoogle Scholar
  12. 12.
    J. E. Gary and R. Mehrotra. Feature-index-based similar shape retrieval. In S. Spaccapietra and R. Jain, editors, Visual Database Systems, volume 3, pages 46–65, 1995. 506, 507Google Scholar
  13. 13.
    J. E. Goodman and J. O’Rourke. Handbook of Discrete and Computational Geometry. CRC Press LLC, 1997. 513Google Scholar
  14. 14.
    D. P. Huttenlocher and W. J. Rucklidge. A multi-resolution technique for comparing images using the hausdorff distance. Technical Report TR92-1321, CS Department, Cornell University, 1992. 507Google Scholar
  15. 16.
    R. Mehrotra and J. E. Gary. Similar-shape retrieval in shape data management. IEEE Computer, 28(9):57–62, 1995. 506Google Scholar
  16. 17.
    W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glassman, D. Petkovic, and P. Yanker. The QBIC project: querying images by content using color, texture and shape. In Proc. SPIE Conference on Storage Retrieval for Image and Video Databases, volume 1908, pages 173–181. SPIE, 1993. 506Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ioannis Fudos
    • 1
  • Leonidas Palios
    • 1
  1. 1.Department of Computer ScienceUniversity of IoanninaIoanninaGreece

Personalised recommendations