Planar Object Detection under Scaled Orthographic Projection

  • Julián Ramos Cózar
  • Nicolás Guil Mata
  • Emilio López Zapata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)


In this work a new method to detect objects under scaled orthographic projections is shown. It also calculates the parameters of the transformations the object has suffered. The method is based on the use of the Generalized Hough Transform (GHT) that compares a template with a projected image. The computational requirements of the algorithm are reduced by restricting the transformation to the template edge points and using invariant information during the comparison process. This information is obtained from a precomputed table of the template that is directly transformed and compared with the image table. Moreover, a multiresolution design of the algorithm speeds-up the parameters calculation.


Edge Point Planar Object Perspective Projection Warped Image Orthographic Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Y. Aloimonos. Perspective approximations. Image and Vision Computing, 18(3):179–192, August 1990. 479CrossRefGoogle Scholar
  2. 2.
    Yu Cheng. Analysis of affne invariants as approximate perspective invariants. Computer Vision and Image Understanding, 63(2):197–207, March 1996. 479zbMATHCrossRefGoogle Scholar
  3. 3.
    S. C. Pei and L. G. Liou. Finding the motion, position and orientation of a planar patch in 3D space from scaled-orthographic projection. Pattern Recognition, 27(1):9–25, 1994. 479CrossRefGoogle Scholar
  4. 4.
    Isaac Weiss. Review. Geometric invariants and object recognition. International Journal of Computer Vision, 10(3):207–231, June 1993. 479CrossRefGoogle Scholar
  5. 5.
    W. J. Rucklidge. Efficiently locating objects using the Hausdorff distance. IJCV, 24(3):251–270, September 1997. 479CrossRefGoogle Scholar
  6. 6.
    G. Lei. Recognition of planar objects in 3-D space from single perspective views using cross ratio. RA, 6:432–437, 1990. 480MathSciNetGoogle Scholar
  7. 7.
    B. S. Song, I. D. Yun, and S. U. Lee. A target recognition technique employing geometric invariants. PR, 33(3):413–425, March 2000. 480Google Scholar
  8. 8.
    C. A. Rothwell, A. Zisserman, C. I. Marinos, D. A. Forsyth, and J. L. Mundy. Relative motion and pose from arbitrary plane curves. IVC, 10:250–262, 1992. 480Google Scholar
  9. 9.
    D. Oberkampf, D. F. DeMenthon, and L. S. Davis. Iterative pose estimation using coplanar feature points. CVIU, 63(3):495–511, May 1996. 480Google Scholar
  10. 10.
    M. I. A. Lourakis, S. T. Halkidis, and S. C. Orphanoudakis. Matching disparate views of planar surfaces using projective invariants. Image and Vision Computing, 18(9):673–683, June 2000. 480CrossRefGoogle Scholar
  11. 11.
    C. A. Rothwell, A. Zisserman, D. A. Forsyth, and J. L. Mundy. Planar object recognition using projective shape representation. IJCV, 16(1):57–99, September 1995. 480CrossRefGoogle Scholar
  12. 12.
    R. J. Holt and A. N. Netravali. Using affne invariants on perspective projections of plane curves. CVIU, 61(1):112–121, January 1995. 480Google Scholar
  13. 13.
    Hannu Kauppinen, Tapio Seppänen, and Matti Pietikäinen. An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE Transactions on Pattern Anal. and Machine Intell., 17(2):201–207, February 1995. 480CrossRefGoogle Scholar
  14. 14.
    N. Guil, J. M. Gonzalez-Linares, and E. L. Zapata. Bidimensional shape detection using an invariant approach. Pattern Recognition, 32(6):1025–1038, 1999. 481, 482, 484CrossRefGoogle Scholar
  15. 15.
    N. Guil, J. R. Cózar, and E. L. Zapata. Planar 3D object detection by using the generalized Hough transform. In 10th Intl. Conf. on Image Analisys and Processing, pages 358–363, September 1999. 483, 488Google Scholar
  16. 16.
    A. K. Jain, Y. Zhong, and S. Lakshmanan. Object matching using deformable templates. PAMI, 18(3):267–278, March 1996. 484Google Scholar
  17. 17.
    S. C. Jeng and W. H. Tsai. Scale-and orientation-invariant generalized Hough transform: A new approach. PR, 24:1037–1051, 1991. 486MathSciNetGoogle Scholar
  18. 18.
    D. C. W. Pao, H. F. Li, and R. Jayakumar. Shapes recognition using the straight line Hough transform: Theory and generalization. PAMI, 14(11):1076–1089, November 1992. 486Google Scholar
  19. 19.
    Vittorio Murino and Gian Luca Foresti. 2D into 3D Hough-space mapping for planar object pose estimation. Image and Vision Computing, 15(6):435–444, 1997. 486CrossRefGoogle Scholar
  20. 20.
    R. C. Lo and W. H. Tsai. Perspective-transformation-invariant generalized Hough transform for perspective planar shape detection and matching. Pattern Recognition, 30(3):383–396, March 1997. 488CrossRefGoogle Scholar
  21. 21.
    Raimond K. K. Yip. A Hough transform technique for the detection of parallel projected rotational symmetry. Pattern Recognition Letters, 20(10):991–1004, November 1999. 488zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Julián Ramos Cózar
    • 1
  • Nicolás Guil Mata
    • 1
  • Emilio López Zapata
    • 1
  1. 1.Dept. of Computer ArchitectureUniversity of MálagaMálaga

Personalised recommendations