Topological Encoding of 3D Segmented Images

  • Yves Bertrand
  • Guillaume Damiand
  • Christophe Fiorio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)


In this paper we define the 3d topological map and give an optimal algorithm which computes it from a segmented image. This data structure encodes totally all the information given by the segmentation. More, it allows to continue segmentation either algorithmically or inter-actively. We propose an original approach which uses several levels of maps. This allows us to propose a reasonable and implementable solu-tion where other approaches don’t allow suitable solutions. Moreover our solution has been implemented and the theoretical results translate very well in practical applications.


Edge Incident Segmented Image Extraction Algorithm Topological Information Adjacency Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Bertrand, C. Fiorio, and Y. Pennaneach. Border map: a topological repre-sentation for nd image analysis. In G. Bertrand, M. Crouprie, and L. Perroton, editors, Discrete Geometry for Computer Imagery, number 1568 in Lecture Notes in Computer Science, pages 242–257, Marne-la-vallée, France, March 1999. 312, 313, 316, 319, 321CrossRefGoogle Scholar
  2. 2.
    M. Bister, J. Cornelius, and A. Rosenfeld. A critical view of pyramid segmentation algorithms. Pattern recognition Letters, 9(11):605–617, 1990. 311CrossRefGoogle Scholar
  3. 3.
    J. P. Braquelaire and L. Brun. Image segmentation with topological maps and inter-pixel representation. Journal of Visual Communication and Image Represen-tation, 1(9):62–79, 1998. 312CrossRefGoogle Scholar
  4. 4.
    J. P. Braquelaire and J. P. Domenger. Representation of segmented images with discrete geometric maps. Image and Vision Computing, pages 715–735, 1999. 312Google Scholar
  5. 5.
    L. Brun. Segmentation d’images couleur á base Topologique.Thèse de doctorat, Université Bordeaux I, décembre 1996. 312Google Scholar
  6. 6.
    R. Cori. Un code pourles graphes planaires et ses applications. PhD thesis, Uni-versité Paris VII, 1973. 312Google Scholar
  7. 7.
    R. Cori. Un code pour les graphes planaires et ses applications. In Astérisque, volume 27. Soc. Math. de France, Paris, France, 1975. 312Google Scholar
  8. 8.
    R. C. Dyer, A. Rosenfeld, and H. Samet. Region representation: boundary codes for quadtrees. In ACM 23, pages 171–179, 1980. 311Google Scholar
  9. 9.
    C. Fiorio. Approche interpixel en analyse d’images: une topologie et des algo-rithmes de segmentation. PhD thesis, Université Montpellier II, 1995. 312Google Scholar
  10. 10.
    C. Fiorio. A topologically consistent representation for image analysis: the fron-tiers topological graph. In S. Miguet, A. Montanvert, and S. Ubeda, editors, 6th International Workshop, DGCI’96, number 1176 in Lecture Notes in Computer Sciences, pages 151–162, Lyon, France, November 1996. 312Google Scholar
  11. 11.
    A. Jacques. Constellations et graphes topologiques. In Combinatorial Theory and Applications, pages 657–673, Budapest, 1970. 312Google Scholar
  12. 12.
    W. G. Kropatsch. Building irregular pyramids by dual graph contraction. In IEE Proceedings: Vision, Image and Signal Processing, volume 142(6), pages 366–374, 1995. 311Google Scholar
  13. 13.
    P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional generalized maps. In 5 th Annual ACM Symposium on Computational Geometry, pages 228–236, Saarbrücken, Germany, 1989. 312Google Scholar
  14. 14.
    A. Rosenfeld. Adjacency in digital pictures. Inform. and Control, 26:24–33, 1974. 311CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    A. Rosenfeld and A. C. Kak. Digital Picture Processing, volume 2. Academic Press, New York, 1982. 311Google Scholar
  16. 16.
    H. Samet. Region representation: quadtrees from boundary codes. In ACM 23, pages 163–170, 1980. 311Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Yves Bertrand
    • 1
  • Guillaume Damiand
    • 2
  • Christophe Fiorio
    • 2
  1. 1.IRCOM-SIC, SP2MIFuturoscope Cedex
  2. 2.LIRMMMontpellier Cedex 5

Personalised recommendations