Advertisement

Recognition of Digital Naive Planes and Polyhedrization

  • Joëlle Vittone
  • Jean-Marc Chassery
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

A digital naiv plan may b seen as a repetition of (n, m)- cubes, set composed of n × m adjacent vox ls or more gen rally sets of p voxels. In a previous works [VC99a ],we hav shown how to link the parameters of a naiv plan to the different configurations of voxels sets by the construction of the associated Farey net. We propose an algorithm to recognize any set of coplanar voxels.This algorithm will be used for the polyhedrization of voxel objects. This is an original contribution offering a new method for digital plan recognition.

Keywords

Digital naiv plan Polyhedrization Recognition Equivalence classes 

References

  1. BF94.
    Ph. Boriann and J. Françon. Reversible polyhedrization of discret volumes. In DGCI’94 pages 157–168, Grenoble, France, September 1994. 296, 305Google Scholar
  2. CM91.
    J. M. Chassery and A. Montanvert. Géométrie discrète en analyse d’images Hermès, Paris, 1991.306Google Scholar
  3. Deb95.
    I. Debled. Etude et reconnaissance des droites et plans discrets. PhDthesis, Louis Past ur University, Strasbourg, France, 1995.296Google Scholar
  4. DRR94.
    I. Debled-Renesson and J.P.Reveillès. An increm ntal algorithm for digital plan recognition.In DGCI’94 pages 207–222, Grenoble, France, September 1994.296Google Scholar
  5. Far16.
    J. Farey. On a curious property of vulgar fractions. Phil. Mag. J. London 47:385–386,1816.300Google Scholar
  6. FP99.
    J. Françon and L. Papier. Polyhedrization of the boundary of a voxel object. In M. Couprie G. Bertrand and L. Perroton,editors, DGCI’99, Lect. Notes Comput. Sci., volum 1568, pages 425–434. Springer, 1999.296Google Scholar
  7. FST96.
    J. Françon, J. M. Schramm, and M. Tajine. Recognizing arithmetic straight lines and planes.In A. Montanvert S. Miguet and S.Ubéda, editors,DGCI’96, Lect. Notes Comput. Sci., volum 1176, pages 141–150. Springer, 1996.296Google Scholar
  8. Gér99.
    Y.Geŕard. Local configurations of digital hyp rplanes. In M. Coupri G. Bertrand and L. Perroton,editors, DGCI’99, Lect. Notes Comput. Sci., volum 1568, pages 65–75.Springer,1999.296Google Scholar
  9. Gra92.
    D. J. Grabiner. Farey nets and multidim nsional continued fractions. Monatsh. Math., 114(1):35–61, 1992.300zbMATHCrossRefMathSciNetGoogle Scholar
  10. KR82.
    C. E. Kim and A. Rosenfeld. Convex digital solids. IEEE Trans. on Pattern Anal. Machine Intell., PAMI-4(6):612–618, 1982.296CrossRefGoogle Scholar
  11. KS91.
    C. E. Kim and I. Stojmenović. On the recognitioon of digital planes in three dimensional space. Pattern Recognition Letters 12:612–618, 1991.296CrossRefGoogle Scholar
  12. Sch97.
    J. M. Schramm. Coplanar tricubes. In E. Ahronovitz and C. Fiorio,editors, DGCI’97, Lect. Notes Comput. Sci., volum 1347, pages 87–98. Springer, 1997.296Google Scholar
  13. ST91.
    I. Stojmenović and R. Tosć. Digitization schemes and the recognition of digital straight lines, hyperplanes and flats in arbitrary dimensions.Contem-porary Mathematics 119:197–212, 1991.296Google Scholar
  14. Sta86.
    R. Stanley. Enumerative Combinatorics, volum 1.WadsworthandBrooks, 1986. 306Google Scholar
  15. VC97.
    J. Vitton and J. M. Chassery. Coexistence of tricubes in digital naive plane. In E. Ahronovitz and C. Fiorio, editors, DGCI’97, Lect. Notes Comput. Sci., volum 1347, pages 99–110. Springer, 1997.296Google Scholar
  16. VC99a.
    J. Vittone and J. M. Chassery. Digital naiv plane understanding. In Vision Geometry VIII volum 3811, pages 22–32. SPIE-The International Society for Optical Engineering, 1999. 296,298Google Scholar
  17. VC99b.
    J. Vitton and J. M. Chassry.(n, m)-cubes and farey nets for naiv planes understanding. In M. Coupri G. Bertrand and L. Perroton, editors, DGCI’99, Lect. Notes Comput. Sci., volum 1568, pages 76–87. Springer, 1999. 296Google Scholar
  18. Vee94.
    P. Veelaert. Recognition of digital algebraic surfaces by large collections of inequalities.In Vision Geometry III volum 2356, pages 2–11. SPIE-The Int rnational Society for Optical Engineering, 1994.296Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Joëlle Vittone
    • 1
  • Jean-Marc Chassery
    • 2
  1. 1.LSIIT -Louis Pasteur UniversityIllkirch-GraffenstadenFrance
  2. 2.LIS -ENSIEGDomain univ rsitaireSaint-Martin d’HèresFranc

Personalised recommendations