Delaunay Surface Reconstruction from Scattered Points

  • Angel Rodríguez
  • José Miguel Espadero
  • Domingo López
  • Luis Pastor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)


The use of three-dimensional digitizers in computer vision and CAD systems produces an object description consisting of a collection of scattered points in R3 . In order to obtain a representation of the objects’ surface it is necessary to establish a procedure that allows the recovering of their continuity, lost during the data acquisition process. A full automatic O (n2) algorithm is presented. Such algorithm obtains surface representations of free genus objects described from a set of points that belong to the original surface of the object. The only information available about each point is its position in R3 . The achieved surface is a Delaunay triangulation of the initial cloud of points. The algorithm has been successfully applied to three-dimensional data proceeding from synthetic and real free shape objects.


Automatic surface reconstruction 3D Delaunay triangulation 3D Modeling 


  1. 1.
    Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering. In 14 th ACM Symposium on Computational Geometry, pages 39–48. ACM, June 1998. 273Google Scholar
  2. 2.
    D. Attali. τ-regular shape reconstruction from unorganized points. Computational Geometry, 10:239–247, 1998. 273zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    C. L. Bajaj, F. Bernardini, and G. Xu. Reconstructing surfaces and functions on surfaces from unorganized three-dimensional data. Algorithmica, 19:243–261, 1997. 273CrossRefMathSciNetGoogle Scholar
  4. 4.
    Jean-Daniel Boissonnat and Frédéric Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. In Proc. 16 th Annu. ACM Symposium on Computational Geometry, 2000. 273Google Scholar
  5. 5.
    S. Campagna and H.-P. Seidel. Parameterizing meshes with arbitrary topology. In H. Niemann, H.-P. Seidel, and B. Girod, editors, Image and Multidimensional Signal Processing’98, pages 287–290, 1998. 273Google Scholar
  6. 6.
    P. Cignoni, C. Montani, R. Perego, and R. Scopigno. Parallel 3D Delaunay triangu-lation. Computer Graphics Forum, 12(3):129–142, 1993. 274CrossRefGoogle Scholar
  7. 7.
    P. Cignoni, D. Laforenza, C. Montani, R. Perego, and R. Scopigno. Evaluation of parallelization strategies for an incremental Delaunay triangulator in E3. Concur-rency: Practice and Experience, 7(1):61–80, 1995. 282CrossRefGoogle Scholar
  8. 8.
    T. K. Dey, K. Mehlhorn, and E. R. Ramos. Curve reconstruction: Connecting dots with good reason. In Proc. 15 t h Annu. ACM Sympos. Comptuational Geometry, pages 197–206, 1999. 273Google Scholar
  9. 9.
    R. Dwyer. A faster divide and conquer algorithm for constructing Delaunay trian-gulations. Algorithmica, 2:137–151, 1989. 274CrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. on Graphics, 12(1):43–72, 1994. 273CrossRefGoogle Scholar
  11. 11.
    T. Fang and L. Piegl. Delaunay triangulation using a uniform grid. IEEE Computer Graphics and Applications, pages 36–47, 1993. 274Google Scholar
  12. 12.
    Olivier Faugueras. Three-Dimensional Computer Vision. A Geometric Viewpoint, chapter 10 Interpolating and Approximating Three-Dimensional Data, pages 403–482. In Olivier Faugueras [13], 1993. 273, 274, 281Google Scholar
  13. 13.
    Olivier Faugueras. Three-Dimensional Computer Vision. A Geometric Viewpoint. The Massaachusetts Institute of Technology, 1993. 283Google Scholar
  14. 17.
    L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7:381–261, 1992. 274zbMATHCrossRefMathSciNetGoogle Scholar
  15. 18.
    A. Hilton and J. G. M. Gonçalves. 3D scene representation using a deformable surface. In IEEE Computer Society Press, editor, Proc. on Physics Based Modeling Workshop in Computer Vision, volume 1, pages 24–30, June 1995. 273Google Scholar
  16. 19.
    H. Hoppe, T. DeRose, T. Duchamp, J. McDonal, and W Stuetzle. Surface recon-struction from unorganized points. In SIGGRAPH’92, pages 71–78, July 1992. 273Google Scholar
  17. 20.
    Andrew E. Johnson and Martial Hebert. Control of polygonal mesh resolution for 3-D computer vision. Graphical Models and Image Processing, 60:261–285, 1998. 272CrossRefGoogle Scholar
  18. 21.
    Leif Kobbelt, Jens Vorsatz, and Hans-Peter Seidel. Multiresolution hierarchies on unstructured triangle meshes. Computational Geometry, 14:5–24, November 1999. 273Google Scholar
  19. 22.
    C. Oblonsek and N. Guid. A fast surface-based procedure for object reconstruction from 3D scattered points. Computer Vision and Image Understanding, 2(69):185–195, 1998. 273CrossRefGoogle Scholar
  20. 23.
    Michael Petrov, Andrey Talapov, Timothy Robertson, Alexeis Lebedev, Alexander Zhilayaev, and Leonid Polonsky. Optical 3D digitizers: Bringing life to the virtual world. IEEE Computer Graphics and Applications, 18(3):28–37, May 1998. 272CrossRefGoogle Scholar
  21. 25.
    H. Shum, M. Hebert, K. Ikeuchi, and R. Reddy. An integral approach to free-form object modeling. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 12(19):1366–1370, 1997. 273CrossRefGoogle Scholar
  22. 26.
    Hiromi T. Tanaka. Accuracy-based sampling an reconstruction with adaptive meshes for parallel hierarchical triangulation. Computer Vision and Image Un-derstanding, 61(3):335–350, May 1995. 273CrossRefGoogle Scholar
  23. 27.
    D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global de-formations: Deformable superquadrics. IEEE Trans. on Pattern Analysis and Ma-chine Intelligence, 13(7):703–714, 1991. 273CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Angel Rodríguez
    • 1
  • José Miguel Espadero
    • 1
  • Domingo López
    • 2
  • Luis Pastor
    • 3
  1. 1.Dep. de Tecnología FotónicaU. Politécnica de MadridMadridSpain
  2. 2.Dep. de I+D.Visual Tools S.A.MadridSpain
  3. 3.Dep. de Ciencias Experimentales y TecnológicasU. Rey Juan CarlosMadridSpain

Personalised recommendations