Surface Digitizations by Dilations Which Are Tunnel-Free

  • Christoph Lincke
  • Charles A. Wüthrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)


In this article we study digital topology with methods from mathematical morphology. We introduce reconstructions by dilations with appropriate continuous structural elements and prove that notions known from digital topology can be defined by continuous properties of this reconstruction. As a consequence we determine the domains for tunnel-free surface digitizations. It will be proven that the supercover and the grid-intersection digitization of every surface with or without boundary is always tunnel-free.


Grid Point Straight Line Segment Mathematical Morphology Continuous Path Simple Closed Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. And99.
    E. Andres. An m-flat supercover is a discrete analytical object. submitted to Theoretical Computer Science, 1999. 263Google Scholar
  2. ANF97.
    E. Andrés, P. Nehlig, and J. Françon. Tunnel-free supercover 3D polygons and polyhedra. Computer Graphics Forum, 16(3):3–14, August 1997. ISSN 1067-7055. 263CrossRefGoogle Scholar
  3. BC99.
    G. Bertrand and M. Couprie. A model for digital topology. Lecture Notes in Computer Science, 1568:229–241, 1999. 262Google Scholar
  4. BŠCOO.
    J. A. Bærentzen, M. Šrámek, and N. A. Christensen. A morphological approach to the voxelization of solids. In V. Skala, editor, Proceedings of the WSGG 2000, pages 44–51, Plzen, Czech Republic, 2000. University of West Bohemia. 263Google Scholar
  5. CK95.
    D. Cohen-Or and A. Kaufman. Fundamentals of surface voxelization. GMIP, 57(6):453–461, November 1995. 263, 265, 266, 269Google Scholar
  6. GL95.
    Ari Gross and Longin Latecki. Digitizations preserving topological and differential geometric properties. Computer Vision and Image Understanding: CVIU, 62(3):370–381, November 1995. 263CrossRefGoogle Scholar
  7. Hei94.
    H. J. A. M. Heijmans. Morphological Image Operators. Academy Press, Boston, 1994. 263, 265, 266zbMATHGoogle Scholar
  8. HW83.
    G. T. Herman and D. Webster. A topological proof of a surface tracking algorithm. CVGIP, 23:92–98, 1983. 262Google Scholar
  9. KKM90.
    E. Khalimsky, R. Kopperman, and P. R. Meyer. Computer graphics and connected topologies on finite ordered sets. Topology and its Applications, 36:1–17, 1990. 262zbMATHCrossRefMathSciNetGoogle Scholar
  10. Kle85.
    R.Klette. The m-dimensional grid point space. Computer Vision, Graphics, and Image Processing, 30:1–12, 1985. 264, 265, 269CrossRefGoogle Scholar
  11. Kov89.
    V. A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing, 46:141–161, 1989. 262CrossRefGoogle Scholar
  12. KR85.
    T. Y. Kong and A. W. Roscoe. Continuous analogs of axiomatized digital surfaces. Computer Vision, Graphics, and Image Processing, 29(1):60–86, January 1985. 263CrossRefGoogle Scholar
  13. KR89.
    T. Y. Kong and A. Rosenfeld. Digital topology. introduction and survey. Computer Vision, Graphics, and Image Processing, 48(3):357–393, December 1989. 262, 265CrossRefGoogle Scholar
  14. LV85.
    Walter Ledermann and Steven Vajda. Combinatorics and geometry. In Walter Ledermann, editor, Handbook of applicable mathematics, volume V. John Wiley & Sons, 1985. 264Google Scholar
  15. LW00a.
    C. Lincke and C. A. Wüthrich. Properties of surface digitizations. Media Systems Research Report RR00-01-paper submitted for publication, 2000. 263, 265, 269Google Scholar
  16. LW00b.
    C. Lincke and C. A. Wüthrich. Towards a unified approach between digitization of linear objects and discrete analytical objects. In V. Skala, editor, Proceedings of the WSGG 2000, pages 124–131, Plzen, Czech Republic, 2000. University of West Bohemia. 263Google Scholar
  17. MR81.
    D. G. Morgenthaler and A. Rosenfeld. Surfaces in three-dimensional digital images. Information And Control, 51:227–247, 1981. 262zbMATHCrossRefMathSciNetGoogle Scholar
  18. Pav82.
    T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press, 1982. 263Google Scholar
  19. Rev92.
    J.-P. Reveillès. Geometrie Discrète, Calcul en Nobres Entiers et Algorithmique. Thèse d’Etat. Université Louis Pasteur, Strasbourg, F, 1992. 263Google Scholar
  20. Sch98.
    M. Schmitt. Digitization and connectivity. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its applications to Signal Processing, volume 12 of Computational Imaging and Vision, pages 91–98. Kluwer Academic Publishers, Dordrecht, 1998. 263Google Scholar
  21. Ser82.
    J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982. 263, 265zbMATHGoogle Scholar
  22. Soi99.
    P. Soille. Morphological Image Analysis. Springer-Verlag, Berlin, 1999. 268zbMATHGoogle Scholar
  23. Vos88.
    K. Voss. Theoretische Grundlagen der Digitalen Bildverarbeitung. Akademie-Verlag, 1988. 262Google Scholar
  24. Wüt98.
    Ch. A. Wüthrich. A model for curve rasterization in n-dimensional space. Computer & Graphics, 22(2–3):153–160, 1998. 264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Christoph Lincke
    • 1
  • Charles A. Wüthrich
    • 1
  1. 1.Computer Graphics, Visualization, Man-Machine Communication Group Faculty of MediaBauhaus University WeimarWeimarGermany

Personalised recommendations