Deformable Modeling for Characterizing Biomedical Shape Changes

  • Matthieu Ferrant
  • Benoit Macq
  • Arya Nabavi
  • Simon K. Warfield
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)


We present a new algorithm for modeling and characteriz- ing shape changes in 3D image sequences of biomedical structures. Our algorithm tracks the shape changes of the objects depicted in the image sequence using an active surface algorithm. To characterize the deformations of the surrounding and inner volume of the object’s surfaces, we use a physics-based model of the objects the image represents. In the applications we are presenting, our physics-based model is linear elasticity and we solve the corresponding equilibrium equations using the Finite Element (FE) method. To generate a FE mesh from the initial 3D image, we have developed a new multiresolution tetrahedral mesh gener- ation algorithm specifically suited for labeled image volumes. The shape changes of the surfaces of the objects are used as boundary conditions to our physics-based FE model and allow us to infer a volumetric deforma- tion field from the surface deformations. Physics-based measures such as stress tensor maps can then be derived from our model for characterizing the shape changes of the objects in the image sequence. Experiments on synthetic images as well as on medical data show the performances of the algorithm.


Deformable models Active surface models Finite elements Tetrahedral mesh generation 


  1. 1.
    D. M. Metaxas. Physics-Based Deformable Models: Applications to Computer Vision, Graphics and Medical Imaging. Kluwer Academic Publishers, 1997. 235, 236, 237Google Scholar
  2. 2.
    D. L. G. Hill, C. R. Maurer, A. J. Martin, S. Sabanathan, W. A. Hall, D. J. Hawkes, D. Rueckert, and C. L. Truwit. Assessment of intraoperative brain deformation using interventional mr imaging. In Berlin Springer-Verlag, editor, MICCAI’ 99, pages 910–919, 1999. 235Google Scholar
  3. 3.
    M. I. Miga, K. D. Paulsen, P. J. Hoopes, F. E. Kennedy, A. Hartov, and D. W. Roberts. In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. IEEE Transactions on Medical Imaging, 47(2):266–273, February 2000. 235, 236, 245Google Scholar
  4. 4.
    O. M. Skrinjar and J. S. Duncan. Real time 3d brain shift compensation. In IPMI’ 99, 1999. 235, 236Google Scholar
  5. 5.
    A. Hagemann, Rohr K., H. S. Stiel, U. Spetzger, and Gilsbach J. M. Biomechanical Modeling of the Human Head for Physically Based, Non-Rigid Image Registration. IEEE Transactions on Medical Imaging, 18(10):875–884, October 1999. 235, 236, 237, 239CrossRefGoogle Scholar
  6. 6.
    Paul M. Thompson, Jay N. Giedd, Roger P. Woods, David MacDonald, Alan C. Evans, and Arthur W. Toga. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, (404):190–193, 2000. Macmillan Publishers Ltd. 235CrossRefGoogle Scholar
  7. 7.
    H. Delinguette. Toward Realistic Soft-tissue Modeling in Medical Simulation. Proceedings of the IEEE, 86(3):512–523, March 1998. 235, 236Google Scholar
  8. 8.
    Pengcheng Shi, Albert J. Sinusas, R. Todd Constable, and James S. Duncan. Volumetric deformation using mechanics-based data fusion: Applications in cardiac motion recovery. International Journal of Computer Vision, November 1999. 235Google Scholar
  9. 9.
    J. Martin, A. Pentland, S. Sclaro., and R. Kikinis. Characterization of Neuropathological Shape Deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(2):97–112, February 1998. 236CrossRefGoogle Scholar
  10. 10.
    Jean-Philippe Thirion and Guillaume Calmon. Deformation analysis to detect and quantify active lesions in 3d medical image sequences. Technical Report 3101, INRIA Sophia Antipolis, February 1997. 236Google Scholar
  11. 11.
    Stephen M. Pizer, Christina A. Burbeck, Daniel S. Fritch, Bryan S. Morse, Alan Liu, Shobha Murthy, and Derek T. Pu.. Human Perception and Computer Image Analysis of Objects in Images. In DICTA-93 Digital Image Computing: Techniques and Applications, volume 1, pages 19–26, 1993. 236Google Scholar
  12. 12.
    G. Stetten and S. M. Pizer. Medial Node Models to identify and Measure Objects in Real-Time 3D Echocardiography. IEEE Transactions on Medical Imaging, 18(10):1025–1034, 1999. 236CrossRefGoogle Scholar
  13. 13.
    S. M. Pizer, D. S. Fritsch, P. Yushkevich, V. Johnson, and E. Chaney. Segmentation, registration, and measurement of shape variation via image object shape. IEEE Transactions on Medical Imaging, pages 851–865, 1996. 236Google Scholar
  14. 14.
    L. D. Cohen and Cohen I. Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:1131–1147, 1993. 236, 242CrossRefGoogle Scholar
  15. 15.
    C. Davatzikos. Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models. Computer Vision and Image Understanding, 66(2):207–222, May 1997. 236CrossRefGoogle Scholar
  16. 16.
    P. Thompson and A. W. Toga. A Surface-Based Technique for Warping Three-Dimensional Images of the Brain. IEEE Transactions on Medical Imaging, 15(4):402–417, 1996. 236CrossRefGoogle Scholar
  17. 17.
    R. Bajcsy and S. Kovacic. Multi-resolution Elastic Matching. Computer Vision, Graphics, and Image Processing, 46:1–21, 1989. 236Google Scholar
  18. 18.
    G. E. Christensen, S. C. Joshi, and M. I. Miller. Volumetric Transformation of Brain Anatomy. IEEE Transactions on Medical Imaging, 16(6):864–877, December 1997. 236CrossRefGoogle Scholar
  19. 19.
    M. Bro-Nielsen and C. Gramkow. Fast Fluid Registration of Medical Images. In Visualization in Biomedical Computing (VBC’ 96), pages 267–276, 1996. 236Google Scholar
  20. 20.
    X. Papademetris, A. J. Sinusas, D. P. Dione, and J. S. Duncan. 3D Cardiac Deformation from Ultrasound Images. In MICCAI 1999: Medical Image Computing and Computer Assisted Intervention, pages 420–429. Springer, September 1999. 236Google Scholar
  21. 21.
    J. Park, D. Metaxas, and L. Axel. Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM. Medical Image Analysis, 1(1):53–71, 1996. 236CrossRefGoogle Scholar
  22. 22.
    E. Haber, D. N. Metaxas, and L. Axel. Motion Analysis of the Right Ventricle from MR images. In MICCAI 1998: Medical Image Computing and Computer Assisted Intervention, pages 177–188. Springer, October 1998. 236Google Scholar
  23. 23.
    S. K. Kyriacou, C. Davatzikos, S. J. Zinreich, and R. N. Bryan. Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Transactions on Medical Imaging, 18(7):580–592, july 1999. 236CrossRefGoogle Scholar
  24. 24.
    O. C. Zienkewickz and R. L. Taylor. The Finite Element Method. McGraw Hill Book Co., 1987. 238, 239Google Scholar
  25. 25.
    Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice Hall PTR, New Jersey, second edition, 1998. 239Google Scholar
  26. 26.
    B. Geiger. Three dimensional modeling of human organs and its application to diagnosis and surgical planning. Technical Report 2105, INRIA, 1993. 239Google Scholar
  27. 27.
    M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International Journal of Computer Vision, 1(4):321–331, 1988. 242CrossRefGoogle Scholar
  28. 28.
    O. Cuisenaire and B. Macq. Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods. Computer Vision and Image Understanding, 76(2):163–172, November 1999. 242CrossRefGoogle Scholar
  29. 29.
    M. Ferrant, O. Cuisenaire, and B. Macq. Multi-Object Segmentation of Brain Structures in 3D MRI Using a Computerized Atlas. In SPIE Medical Imaging’ 99, volume 3661-2, pages 986–995, 1999. 243Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Matthieu Ferrant
    • 2
  • Benoit Macq
    • 2
  • Arya Nabavi
    • 1
  • Simon K. Warfield
    • 1
  1. 1.Surgical Planning LaboratoryBrigham and Women’s Hospital Harvard Medical SchoolBostonUSA
  2. 2.Telecommunications LaboratoryUniversité catholique de LouvainBelgium

Personalised recommendations