Advertisement

Tesselations by Connection in Orders

  • Michel Couprie
  • Gilles Bertrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

The watershedt ransformation is a powerful tool for segmenting images, but its precise de.nition in discrete spaces raises di.cult problems. We propose a new approach in the framework of orders. We introduce the tesselation by connection, which is a transformation that preserves the connectivity, andcan be implemented by a parallel algorithm. We prove that this transformation possesses goodg eometrical properties. The extension of this transformation to weightedo rders may be seen as a generalization of the watershedt ransformation.

Keywords

discrete topology order, discrete distance infuence zones watershed 

References

  1. 1.
    S. Beucher, Ch. Lantuejoul, “Use of Watersheds in Contour Detection”, Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/ Estimation, Rennes, France, 1979. 15, 24Google Scholar
  2. 2.
    C. Lohou, G. Bertrand, “Poset approach to 3D parallel thinning”, SPIE Vision Geometry VIII., Vol. 3811, pp. 45–56, 1999. 15Google Scholar
  3. 3.
    S. Beucher, “Segmentation d’images et morphologie mathématique”, PhD Thesis, École des Mines, Paris, 1990. 16Google Scholar
  4. 4.
    L. Vincent, P. Soille, “Watersheds in Digital Spaces: An E.cient Algorithm Based on Immersion Simulations”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, pp. 583–598, 1991. 16CrossRefGoogle Scholar
  5. 5.
    F. Prêteux, “Watersheda ndSk eleton by In.uence Zones: A Distance-Based Approach”, Journal of Mathematical Imaging and Vision, No. 1, pp. 239–255, 1992. 16Google Scholar
  6. 6.
    S. Beucher and F. Meyer, “The morphological approach to segmentation: the watershed transformation”, Mathematical Morphology in Image Processing, Chap. 12, pp. 433–481, Dougherty Ed., Marcel Dekker, 1993. 16Google Scholar
  7. 7.
    F. Meyer, “Topographic distance and watershed lines”, Signal Processing, No. 38, pp. 113–125, 1994. 16Google Scholar
  8. 8.
    T. Y. Kong and A. Rosenfeld, “Digital topology: introduction and survey”, Comp. Vision, Graphics and Image Proc., 48, pp. 357–393, 1989. 16, 19Google Scholar
  9. 9.
    M. Couprie and G. Bertrand: “Topological Grayscale Watershed Transformation” SPIE Vision Geometry V Proceedings, Vol. 3168, pp. 136–146, 1997. 16Google Scholar
  10. 10.
    G. Bertrand, “New notions for discrete topology”, 8th Conf. on Discrete Geom. for Comp. Imag., Vol. 1568, Lect. Notes in Comp. Science, Springer Verlag, pp. 218–228, 1999. 16, 17, 18Google Scholar
  11. 11.
    P. Alexandro., “Diskrete Räume”, Mat. Sbornik, 2, pp. 501–518, 1937. 16, 17Google Scholar
  12. 12.
    E. Khalimsky, R. Kopperman, P. R. Meyer, “Computer Graphics and Connected Topologies on Finite Ordered Sets”, Topology and its Applications, 36, pp. 1–17, 1990. 18zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Serra, Image Analysis and Mathematical Morphology, Academic Press, 1982. 18Google Scholar
  14. 14.
    G. Bertrand, M. Couprie, “A model for digital topology”, 8th Conf. on Discrete Geom. for Comp. Imag., Vol. 1568, Lect. Notes in Comp. Science, Springer Verlag, pp. 229–241, 1999. 19Google Scholar
  15. 15.
    G. Matheron, J. Serra, Strong filters and connectivity, in Image Analysis and Mathematical Morphology, Vol. II: Theoretical Advances, Chap. 7, pp. 141–157, Serra J. ed., Academic Press, 1988. 22Google Scholar
  16. 16.
    V. A. Kovalevsky, “Finite Topology as Appliedt o Image Analysis”, Computer Vision, Graphics, and Image Processing, 46, pp. 141–161, 1989. 25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Michel Couprie
    • 1
  • Gilles Bertrand
    • 1
  1. 1.Laboratoire A2SIESIEE Cité DescartesNoisy-Le-GrandFrance

Personalised recommendations