Advertisement

Strong Thinning and Polyhedrization of the Surface of a Voxel Object

  • Jasmine Burguet
  • Rémy Malgouyres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

We first propose for digital surfaces a notion analogous to the notion of strong homotopy which exists in 3D [1]. We presentan associated parallel thinning algorithm. The surface of an object composed of voxels is a seto f surfels (faces of voxels) which is the boundary between this object and its complementary. But this representation is not the classical one to visualize and to work on 3D objects, in frameworks like Computer Assisted Geometric Design (CAGD). For this reason we propose a method for passing e.ciently from a representation to the other. More precisely, we present a three-step algorithm to polyhedrize the boundary of a voxel object which uses the parallel thinning algorithm presented above. This method is speci.cally adapted to digital objects and is much more e.cient than such existing methods [12]. Some examples are shown, and a method to make the reverse operation (discretization) is briefly presented.

Keywords:

digital surface thinning strong homotopy parallel algorithm polyhedrization 

References

  1. 1.
    G. BERTRAND. On P-simple points, no. 321, C.R Acad’emie des Sciences, 1995. 222, 223, 226Google Scholar
  2. 2.
    T. J. FAN, G. MEDIONI, R. NEVATA. Recognising 3D Objects Using Surface Description, IEEE Trans. Pattern Anal. Mach. Intelligence 11(11),1140–1157, 1989. 222CrossRefGoogle Scholar
  3. 3.
    A. LENOIR. Fast Estimation of Mean Curvature on the Surface of a 3D Discrete Object, Proceedings of DGCI’97, Lecture Notes in Computer Science, Vol. 1347, pp. 213–222, 1997. 222, 228Google Scholar
  4. 4.
    A. LENOIR. Des Outils pour les Surfaces Discrètes, PhD Thesis, 1999. 222, 227, 228Google Scholar
  5. 5.
    R. MALGOUYRES. Presentation of the fundamental group in digital surfaces, Proceedings of DGCI’99, Lecture Notes in Computer Science, Vol. 1568, pp. 136–150, March 1999. 223Google Scholar
  6. 6.
    S. FOUREY, R. MALGOUYRES. Intersection number of paths lying on a digital surface and a new Jordan theorem, Proceedings of DGCI’99, Lecture Notes in Computer Science, Vol. 1568, pp. 104–117, March 1999. 223Google Scholar
  7. 7.
    T. J. FAN, G. MEDIONI, R. NEVATA. Recognising 3D Objects Using Surface Descriptions, IEEE Trans. Pattern Anal. Mach. Intelligence 11(11), pp. 1140–1157, 1989. 222CrossRefGoogle Scholar
  8. 8.
    G. FARIN. Computer Assisted Geometric Design (CGAD). Academic Press, Inc. 222Google Scholar
  9. 9.
    R. MALGOUYRES, A. LENOIR. Topology Preservation Within Digital Surfaces Graphical Models (GMIP) 62, 71–84, 2000. 225, 226, 227CrossRefGoogle Scholar
  10. 10.
    T. Y. KONG, A. ROSENFELD. Digital Topology: Introduction and Survey. Computer Vision, Graphics, and Image Processing 48, 357–393, 1989. 226CrossRefGoogle Scholar
  11. 11.
    G. T. HERMAN. Discrete Multidimensional Jordan Surfaces, CVGIP: Graph. Models Image Process. 54, 507–515, 1992. 225CrossRefGoogle Scholar
  12. 12.
    J. FRANÇON, L. PAPIER. Polyhedrization of the Boundary of a Voxel Object, Proceedings of DGCI’99, Lecture Notes in Computer Science, Vol. 1568, pp. 425–434, Mars 1999. 222, 223, 232Google Scholar
  13. 13.
    G. BERTRAND. Simple points, topological numbers and geodesic neighborhoods in cubics grids, Patterns Recognition Letters, 15:1003–1011, 1994. 223CrossRefGoogle Scholar
  14. 14.
    R. MALGOUYRES. Homotopy in 2-Dimensional Digital Images Theoretical Computer Science. Vol. 230, pp. 221–233, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. MALGOUYRES, S. FOUREY. Intersection Number and Topology Preservation Within Digital Surfaces, Proceedings of DGCI’99, Lecture Notes in Computer Science, Vol. 1568, pp. 104–117, Mars 1999.Google Scholar
  16. 16.
    J. K. UDUPA, V. G. AJJANAGADDE. Boundary and Object Labelling in Three-Dimensonal Images, Computer Vision, Graphics, and Image Processing 51, 355–369, 1990. 225CrossRefGoogle Scholar
  17. 17.
    R. KLEIN. Concrete and Abstract Voronoï Diagrams. Lecture Notes in Computer Science, Springer Verlag Ed., 1989. 223zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jasmine Burguet
    • 1
  • Rémy Malgouyres
    • 1
  1. 1.GREYC, ISMRACaenFrance

Personalised recommendations