Object Discretization in Higher Dimensions

  • Valentin E. Brimkov
  • Eric Andres
  • Reneta P. Barneva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)


In this paper we study discretizations of objects in higher dimensions. We introduce a large class of object discretizations, called kdiscretizations. This class is natural and quite general, including as special cases some known discretizations, like the standard covers and the naive discretizations. Various results are obtained in the proposed general setting.


Object discretization Supercover Standard cover Naive discretization k-Discretization 


  1. 1.
    Andres, E.: An m-Flat Supercover is a Discrete Analytical Object. TR 1998–07, IRCOM-SIC, Université de Poitiers, Bat. SP2MI-BP. 179, F-86960 Futuroscope Cédex-FRANCE (1998) 210, 212Google Scholar
  2. 2.
    Andres, E.: Standard Cover: a New Class of Discrete Primitives. TR 1998–02, IRCOM-SIC, Université de Poitiers, Bat. SP2MI-BP. 179, F-86960 Futuroscope Cédex-FRANCE (1998) 210, 211, 217, 219, 220Google Scholar
  3. 3.
    Andres, E., Acharya, R., Sibata, C.: Discrete Analytical Hyperplanes. Graphical Models and Image Processing, 59 (5) (1997) 302–309 210, 217, 220CrossRefGoogle Scholar
  4. 4.
    Barneva, R. P., Brimkov, V. E., Nehlig, P.: Thin Discrete Triangular Meshes. Theoretical Computer Science 264 (1–2) (2000) 73–105 218CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bresenham, J. E.: Algorithms for Computer Control of a Digital Plotter. IBM Syst. J., 4 (1) (1965) 25–30 217Google Scholar
  6. 6.
    Brimkov, V. E., Barneva, R. P.: Graceful Planes and Lines, Theoretical Computer Science, Elsevier, to appear 218Google Scholar
  7. 7.
    Brimkov, V. E., Barneva, R. P., Nehlig, P.: Minimally Thin Discrete Triangulations. In: Volume Graphics, M. Chen, A. Kaufman, R. Yagel (Eds.), Springer Verlag (2000) 51–70 218Google Scholar
  8. 8.
    Bertrand, G., Couprie, M.: A Model for Digital Topology. Lecture Notes in Computer Science, Vol. 1568, Springer-Verlag, Berlin (1999) 229–241 211Google Scholar
  9. 9.
    Cohen, D., Kaufman, A.: Fundamentals in Surface Voxelization. CGVIP Graphical Models and Image Processing, 57 (6) (1995) 211, 212Google Scholar
  10. 10.
    Debled-Rennesson, I., Reveillès, J-P.: A new approach to digital planes. In: SPIE Vision Geometry III, Boston 2356 1994 217Google Scholar
  11. 11.
    Figueiredo, O., Reveillès, J-P.: A Contribution to 3D Digital Lines. In: Proc. the 5th Internat. Workshop DGCI, Clermont-Ferrand (1995) 187–198 217Google Scholar
  12. 12.
    Françon, J.: Discrete Combinatorial Surfaces. CGVIP Graphical Models and Image Processing, 57 (1995) 217Google Scholar
  13. 13.
    Kaufman, A., Shimony, E.: 3D Schan-Conversion Algorithms for Voxel-Based Graphics. In: Proc. 1986 Workshop on Interactive 3D Graphics, Chapel Hill, NC, ACM, New York (1986) 45–75 217Google Scholar
  14. 14.
    Kong, T. Y., Kopperman, R., Meyer, P. R.: A Topological Approach to Digital Topology. American Mathematical Monthly, 38 (1991) 901–917 211CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kong, T. Y., Rosenfeld, A.: Digital Topology: Introduction and Survey. Computer Vision, Graphics, and Image Processing 48 (1989) 357–393 211CrossRefGoogle Scholar
  16. 16.
    Kovalevsky, V. A.: Finite Topology as Applied to Image Analysis. Computer Vision, Graphics, and Image Processing 46 (1989) 141–161 211CrossRefGoogle Scholar
  17. 17.
    Reveillès, J.-P.: Géométrie Discréte, Calcul en Nombres Entiers et Algorithmique. Thèse d’État, Université Louis Pasteur, Strasbourg, France (1991) 211, 217, 220Google Scholar
  18. 18.
    Stojmenovic, I., Tosic, R.: Digitization Schemes and the Recognition of Digital Straight Lines, Hyperplanes and Flats in Arbitrary Dimensions. Digital Geometry. Contemporary Math. Series, Amer. Math. Soc. Providence, RI 119 (1991) 197–212 210, 217MathSciNetGoogle Scholar
  19. 19.
    Tajine, M., Wagner, D., Ronse, C.: Hausdorff Discretizations and its Comparison to Other Discretization Schemes. Lecture Notes in Computer Science, Vol. 1568, Springer-Verlag, Berlin (1999) 399–410 211, 217Google Scholar
  20. 20.
    Veerlaert, P.: On the Flatness of Digital Hyperplanes. J. Math Imaging Vision 3 (1993) 205–221 210, 217CrossRefMathSciNetGoogle Scholar
  21. 21.
    Wagner, D., Tajine, M., Ronse, C.: An Approach to Discretization Based on Hausdorff Metric. ISMM’98, Kluwer Academic Publisher (1998) 67–74 211, 217Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Valentin E. Brimkov
    • 1
  • Eric Andres
    • 2
  • Reneta P. Barneva
    • 1
  1. 1.Eastern Mediterranean UniversityFamagustaTurkey
  2. 2.SIC-IRCOMUniversité de PoitiersFuturoscope CédexFrance

Personalised recommendations