Determining Visible Points in a Three-Dimensional Discrete Space

  • Grit Thürmer
  • Arnault Pousset
  • Achille J. -P. Braquelaire
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

A method is proposed which computes the visible points of surfaces in a 3-dimensional discrete space. The occlusion of surface points of an object by other object points is determined by shooting a discrete ray from each surface point towards the center of projection considering the intersection of the ray with other object points. Since the projection of points onto the viewing plane is done by a continuous mapping, additionally to the discrete ray, the location of the continuous projection ray is examined regarding its location to the surface points that are intersected by the discrete ray.

Keywords

Computer Graphic Inside Point Volume Rendering Surface Point Object Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cohen, D., and Kaufman, A. Scan-conversion algorithms for linear and quadratic objects. In Volume visualization, A. Kaufman, Ed. IEEE Computer Society Press, 1991, pp. 280–301. 171Google Scholar
  2. 2.
    Delfosse, J., Hewiti, W. T., and Mériaux, M. An investigation of discrete ray-tracing. In Proc. of the 4th Colloquium on Discrete Geometry for Computer Imagery (DGCI’94) (Grenoble (France), 1994), pp. 65–74. 172, 174Google Scholar
  3. 3.
    Ke, H. R., and Chang, R. C. Sample buffer: A progessive refinement ray-casting algorithm for volume rendering. Computers and Graphics 17, 3 (1993), 277–283. 171CrossRefGoogle Scholar
  4. 4.
    Laur, D., and Hanrahan, P. Hierarchical splatting: A progressive re.nement algorithm for volume rendering. Computer Graphics 25, 4 (1991), 285–288. 172CrossRefGoogle Scholar
  5. 5.
    Levoy, M. Display of surfaces from volume data. IEEE Computer Graphics and Applications 8, 5 (1988), 29–37. 171CrossRefGoogle Scholar
  6. 6.
    Levoy, M. Effcient ray tracing of volume data. ACM Transactions on Graphics 9, 3 (1990), 245–261. 171MATHCrossRefGoogle Scholar
  7. 7.
    Malgouyres, R. A definition of surfaces of Z3: A new 3D discrete Jordan theorem. Theoretical Computer Science 186 (1997), 1–41. 175MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Morgenthaler, D. G., and Rosenfeld, A. Surfaces in three-dimensional digital images. Information and Control 51 (1981), 227–247. 175MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mueller, K., and Yagel, R. Fast perspective volume rendering with splatting by utilizing a ray-driven approach. In Proc. of Visualization’ 96 (San Francisco, CA, 1996), pp. 65–72. 171Google Scholar
  10. 10.
    Nehlig, P., and Montani, C. A discrete template based plane casting algorithm for volume viewing. In Proc. of the 5th Colloquium on Discrete Geometry for Computer Imagery (DGCI’95) (Clermont-Ferrand (France), 1995), pp. 71–81. 171Google Scholar
  11. 11.
    Shareef, N., and Yagel, R. Rapid previewing via volume-based solid modeling. In Proc. of Solid Modeling’ 95 (1995), pp. 281–292. 171Google Scholar
  12. 12.
    Thürmet, G. Rendering surfaces of synthetic solid objects. submitted for publication. 172, 179Google Scholar
  13. 13.
    Thürmet, G., and WÜTHRICH, C. A. Normal computation for discrete surfaces in 3D space. Computer Graphics Forum (Proc. Eurographics’97) 16, 3 (1997), C15–C26. 173, 179Google Scholar
  14. 14.
    Upson, C., and Keeler, M. V-bu.er: Visible volume rendering. Computer Graphics (SIGGRAPH’88) 22, 4 (1988), 59–64. 171CrossRefGoogle Scholar
  15. 15.
    Wang, S. W., and Kaufman, A. E. Volume sampled voxelisation of geometric primitives. In Proc. of Visualization’ 93 (1993), IEEE Computer Society Press, pp. 78–84. 171Google Scholar
  16. 16.
    Wang, S. W., and Kaufman, A. E. Volume-sampled 3D modeling. IEEE Computer Graphics and Applications14, 5 (1994), 26–32. 171CrossRefGoogle Scholar
  17. 17.
    Westover, L. Footprint evaluation for volume rendering. Computer Graphics (SIGGRAPH’90) 24, 4 (1990), 144–153. 172Google Scholar
  18. 18.
    Yagel, R., Cohen, D., and Kaufman, A. Discrete ray tracing. IEEE Computer Graphics and Applications 12, Sep. (1992), 19–28. 171, 175Google Scholar
  19. 19.
    Yagel, R., Stredney, D., Wiet, G. J., Schmalbrock, P., Rosenberg, L., Sessanna, D. J., and Kurzion, Y. Building a virtual environment for endoscopic sinus surgery simulation. Computers and Graphics 20, 6 (1996), 813–823. 171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Grit Thürmer
    • 1
    • 2
  • Arnault Pousset
    • 2
  • Achille J. -P. Braquelaire
    • 2
  1. 1.CoGVis/MMC - Computer Graphics, Visualization, Man-Machine CommunicationGroup, Faculty of MediaBauhaus-University WeimarWeimarGermany
  2. 2.LaBRI - Laboratoire Bordelais de Recherche en Informatique - UMR 5800University Bordeaux 1TalenceFrance

Personalised recommendations