Advertisement

Some Properties of Hyperbolic Networks

  • Christophe Papazia
  • Eric Rémila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

Many mathematical results exist about continuous topolog-ical surfaces of negative curvature. We give here some properties of dis-crete regular tessellations on such objects and explain a characterization of discrete geodesics and areas that shows how such hyperbolic networks can be seen as intermediary structures between Euclidean infinite tessel-lations (like square grid) and regular infinite trees. We do not use some possible group structures of this networks (Cayley graphs) but only geometrical arguments in our constructive proofs. Hence we can see that there are few geodesics in hyperbolic networks and that large areas have very unsmooth borders.

References

  1. 1.
    J. M. Chassery, A. Montanvert, Géométrie discréte en analyse d’images, Hermés, Paris (1991). 149Google Scholar
  2. 2.
    H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, Berlin. Göttingen 1957. 150Google Scholar
  3. 3.
    E. Ghys, C. de la Harpe, Sur les groupes hyperboliques d’aprés Michaël Gromov, Birkhäuser Ed., (1990). 150Google Scholar
  4. 4.
    J. P. Reveillès, Géométrie discrète, calcul en nombre entiers et algorithmique,Thèse d’Etat, Université L. Pasteur, Strasbourg (1991). 149Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Christophe Papazia
    • 1
  • Eric Rémila
    • 1
    • 2
  1. 1.Laboratoire de l’Informatique du Parallélisme CNRS UMR 5668Ecole Normale Supérieure de LyonLyon Cedex 07France
  2. 2.GRIMAIUT Roanne, Université J. MonnetRoanne CedexFrance

Personalised recommendations