Annotated Temporal Logics Δ*τ

  • Jair Minoro Abe
  • Seiki Akama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1952)


In this paper we present a class of paraconsistent temporal system Δ*τ which may constitute, for instance, a framework for paracon- sistent temporal reasoning. We establish the completeness of Δ*τ using the Kripke semantics. The proposed temporal logic subsumes the classi- cal one with the advantage of handling inconsistency.


Time in Paraconsistent logics paraconsistent temporal logic, time and paraconsistency. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Abe 92 ]
    Abe, J.M., 1992, Fundamentos da logica anotada, (Foundations of annotated logics), in Portuguese, Ph.D. thesis, University of Sao Paulo, Sao Paulo.Google Scholar
  2. [Abe 93]
    Abe, J.M., 1993, On annotated model theory, Colecao Documentos, Serie Logica e Teoria da Ciencia, IEA-USP, 05.Google Scholar
  3. [Abe 94]
    Abe, J.M., 1994, On annotated modal logics, Mathematica Japonica, 40, No. 3, 553–560.Google Scholar
  4. [Akama & Abe 98]
    Akama, S. & J.M. Abe, 1998, Many-valued and annotated modal logics, Proc. of the IEEE 1998 International Symposium on Multiple-Valued Logic (ISMVL’98), 114–119, Fukuoka, Japan.Google Scholar
  5. [Abe & Akama 98]
    Abe, J.M. & S. Akama, 1998, Incorporating time in paraconsistent reasoning, to appear.Google Scholar
  6. [Banieqbal & Barringer 86]
    Banieqbal, B. & H. Barringer, 1986!CA study of an extended temporal language and a temporal fixed point calculus, Technical Report UMCS-86-10-2, Department of Computer Science, University of Manchester, 1986.Google Scholar
  7. [Da Costa 91a]
    Da Costa, N.C.A., V.S. Subrahmanian, & C. Vago, 1991, The paraconsistent logics Pτ, Zeitschr. f. Math. Logik und Grundlagen d. Math., 37, 139–148.Google Scholar
  8. [Da Costa 91b]
    Da Costa, N.C.A., J.M. Abe, & V.S. Subrahmanian, 1991, Remarks on annotated logic, Zeitschr. f. Math. Logik und Grundlagen d. Math., 37, 561–570.Google Scholar
  9. [Da Costa 96]
    Da Costa, N.C.A., 1996, Logiques Classiques et non Classiques, Masson.Google Scholar
  10. [Emerson 90]
    Emerson, E. A., 1990, Temporal and modal logic, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, 995–1072, Elsevier, Amsterdam.Google Scholar
  11. [Gabbay et al. 80]
    Gabbay, D., A. Pnuelli, S. Shelah, & J. Stavi, 1980, The temporal analysis of fairness, Proc. of the 7th ACM Symposium on Principles of Programming languages, 163–173, 1980.Google Scholar
  12. [Subrahamanian 87]
    Subrahmanian, V.S., 1987, On the semantics of quantitative logic programs, Proc. of the 4th IEEE Symposium on Logic Programming, 173–182.Google Scholar
  13. [Wolper 82]
    Wolper, P., 1982, Synthesis of Communication Process from Temporal Logic, Ph.D. Thesis, Stanford University.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jair Minoro Abe
    • 1
    • 1
  • Seiki Akama
    • 2
  1. 1.Department of InformaticsICET, Paulista UniversitySao PauloBRAZIL
  2. 2.Institute foror Advanced StudiesUniversity of Sao PauloSao PauloBRAZIL

Personalised recommendations