Sharing Resource-Sensitive Knowledge Using Combinator Logics

  • Marcelo Finger
  • Wamberto Vasconcelos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1952)


Research on ontologies has been pursued as a solution to the difficult problem of knowledge sharing. Ontologies consist of a do- main description which suits the needs of all systems to be integrated. Any agreed ontology, however, is not the end of the problems involved in knowledge sharing since how we represent knowledge is intimately linked to the inferences we expect to perform with it. Knowledge sharing can- not ignore the similarities and differences between the inference engines participating in the information exchange. We illustrate this issue via a case study on resource-sensitive knowledge-based systems and we show how these can efficiently share their knowledge using combinator logics.


Knowledge sharing resource-sensitive logics. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    James Allen. Natural Language Understanding. Benjamin-Cummings Publishing Co., 2nd edition, 1994.Google Scholar
  2. 2.
    A. R. Anderson and N. D. Belnap Jr. Entailment: The Logic of Relevance and Necessity. Princeton Univ. Press, 1975.Google Scholar
  3. 3.
    H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier Science Publishers, 1981.Google Scholar
  4. 4.
    Bob Carpenter. Type-Logica Semantics. MIT press, 1997.Google Scholar
  5. 5.
    M. Cerioli and J. Meseguer. May I borrow your Logic? (Transporting Logical Structures along Maps). Theoretical Computer Science, 173:311–347, 1997.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    F. S. Correa da Silva, W. W. Vasconcelos, and D. S. Robertson. Cooperation Between Knowledge-Based Systems. In Proc. IV World Congress on Expert Systems, pages 819–825, Mexico City, Mexico, 1998.Google Scholar
  7. 7.
    F. S. Correa da Silva, W. W. Vasconcelos, D. S. Robertson, J. Agustí, and A. C. V. Melo. Why Ontologies are not Enough for Knowledge Sharing. In Springer-Verlag, editor, LNAI, vol. 1611, pages 520–529, 1999.Google Scholar
  8. 8.
    D. Van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosoph. Log., volume III, 1984.Google Scholar
  9. 9.
    K. Došen. A Historical Introduction to Substructural Logics. In P. S. Heister and K. Došen, editors, Substructural Logics, pages 1–31. Oxford Univ. Press, 1993.Google Scholar
  10. 10.
    J. M. Dunn and R. K. Meyer. Combinators and Structurally Free Logic. Logic Journal of the IGPL, 5(4):505–538, 1997.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Finger. Towards structurally-free theorem proving. Logic Journal of the IGPL, 6(3):425–449, 1998.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Finger. Structurally-free theorem proving and the learning of structural permissions in categorial grammar. In Proc. 4th Workshop on Logical Aspects of Comp. Ling. (LACL98), 1998.Google Scholar
  13. 13.
    Dov M. Gabbay. Labelled Deductive Systems, volume 1 of Oxford Logic Guides: 33. Oxford Univ. Press, 1996.Google Scholar
  14. 14.
    J. Giarratano and G. Riley. Expert Systems: Principles and Programming. PWS Publ. Co., 3rd. edition, 1999.Google Scholar
  15. 15.
    J. Y. Girard. Linear Logic. Theor. Comp. Sc., 50:1–102, 1987.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specification and Programming. J. ACM, 39:95–146, 1992.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Gray et al. KRAFT-Knowledge Reuse and Fusion/Transformation. apreece/ Research/ KRAFT/ KRAFTinfo.html.
  18. 18.
    N. Guarino, editor. Formal Ontology in Information Systems. IOS Press, 1998.Google Scholar
  19. 19.
    J. S. Hodas and D. Miller. Logic Programming in a Fragment of Intuitionistic Linear Logic. Inf. & Comput., 110(2):327–365, 1994.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Moortgat. Categorial type logics. In J. Van Benthem and A. ter Meulen, editors, Handbook of Logic and Language, pages 93–178. Elsevier North-Holland/MIT Press, 1997.Google Scholar
  21. 21.
    R. Neches and D. Gunning. The Knowledge Sharing Effort. /papers/kse-overview.html.
  22. 22.
    A. Schönfinkel. Über die Bausteine der Mathematischen Logik. In J. van Heijenoort, editor, From Frege to Gödel. Harvard Univ. Press, Cambridge, Mass., 1924. Reprinted.Google Scholar
  23. 23.
    V. S. Subrahmanian (project director). Hermes-a Heterogeneous Reasoning and Mediator System. projects/hermes/index.html.
  24. 24.
    M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Applications. Knowl. Eng. Review, 11(2):93–136, 1996.CrossRefGoogle Scholar
  25. 25.
    M. Winikoff and J. Harland. Implementation and Development Issues for the Linear Logic Programming Language Lygon. In Proc. 8th Australasian Computer Science Conf., pages 562–573, Adelaide, Australia, February 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Marcelo Finger
    • 1
  • Wamberto Vasconcelos
    • 2
  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  2. 2.Institut für InformatikUniversität ZürichZürichSwitzerland

Personalised recommendations