Skip to main content

Petriplan: A New Algorithm for Plan Generation (Preliminary Report)

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 1952)

Abstract

Recent research shows that Integer Programming techniques are a very promising tool in the AI Planning area. In this paper we define the planning problem as a submarking reachability problem in a Petri net, which is solved by the use of standard IP methods. Using a similar idea to that of the Blackbox algorithm, we show how to translate the plan graph obtained in the first phase of Graphplan into an acyclic Petri net.

Keywords

  • AI Planning
  • Petri Nets
  • Reachability
  • Integer Programming.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-44399-1_10
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-44399-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Beek and X. Chen. Cplan: A constraint programming approach to planning. In Proc. of the Sixteenth National Conference on AI (AAAI-99), 1999.

    Google Scholar 

  2. A. Blum and M. Furst. Fast planning through planning graph analysis. In Proceedings of IJCAI-95, pages 1636–1642, Montreal, August 1995.

    Google Scholar 

  3. A. Bockmayr and Y. Dimopoulos. Mixed integer programming models for planning problems. In Workshop on Constraint Problem Reformulation, Pisa, Italy, 1998.

    Google Scholar 

  4. B. Bonet and H. Geffner. HSP: Planning as heuristic search. In Entry at the AIPS-98 Planning Competition, Pittsburgh, June 1998.

    Google Scholar 

  5. R. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to problem solving. Journal of Artificial Intelligence, 2(3–4), 1971.

    Google Scholar 

  6. H. Kautz and B. Selman. Planning as satisfiability. In Proc. 10th Eur. Conf. AI, pages 359–363, Vienna, Austria, 1992. Wiley.

    Google Scholar 

  7. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search. In Proceedings of the AAAI-96, Portland, OR, 1996.

    Google Scholar 

  8. H. Kautz and B. Selman. Unifying sat-based and graph-based planning. In Proceedings of IJCAI, 1999.

    Google Scholar 

  9. H. Kautz and J.P. Walser. State-space planning by integer optimization. In Proceedings Sixteenth National Conference on AI (AAAI-99), 1999.

    Google Scholar 

  10. D. McDermott. Aips-98 planning competition results. Technical report, http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html, 1998.

  11. H. Mittelmann. Benchmarks for optimization software. Technical report, http://plato.la.asu.edu/bench.html, May 2000.

  12. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580, April 1989.

    Google Scholar 

  13. T. Murata and P.C. Nelson. A predicate-transition net model for multiple agent planning. Information Sciences, 57–58:361–384, 1991.

    CrossRef  Google Scholar 

  14. T. Vossen, M. Ball, A. Lotem, and D. Nau. On the use of integer programming models in ai planning. In Proceedings of the IJCAI 99, pages 304–309, 1999.

    Google Scholar 

  15. D. Weld. Recent advances in ai planning. AI Magazine, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, F., Alexandre Castilho, M., Allan Künzle, L. (2000). Petriplan: A New Algorithm for Plan Generation (Preliminary Report). In: Monard, M.C., Sichman, J.S. (eds) Advances in Artificial Intelligence. IBERAMIA SBIA 2000 2000. Lecture Notes in Computer Science(), vol 1952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44399-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44399-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41276-2

  • Online ISBN: 978-3-540-44399-5

  • eBook Packages: Springer Book Archive